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Abstract—AMD SEV-SNP offers VM-level trusted execution
environments (TEEs) to protect the confidentiality and in-
tegrity for sensitive cloud workloads from untrusted hypervisor
controlled by the cloud provider. AMD introduced a new
exception, #VC, to facilitate the communication between the
VM and the untrusted hypervisor. We present WESEE attack,
where the hypervisor injects malicious #VC into a victim VM’s
CPU to compromise the security guarantees of AMD SEV-
SNP. Specifically, WESEE injects interrupt number 29, which
delivers a #VC exception to the VM who then executes the
corresponding handler that performs data and register copies
between the VM and the hypervisor. WESEE shows that using
well-crafted #VC injections, the attacker can induce arbitrary
behavior in the VM. Our case-studies demonstrate that WESEE

can leak sensitive VM information (kTLS keys for NGINX),
corrupt kernel data (firewall rules), and inject arbitrary code
(launch a root shell from the kernel space).

1. Introduction

Hardware-based trusted execution environments (TEEs)
make it possible to execute sensitive computation on an
untrusted cloud while providing confidentiality and integrity
guarantees. Hardware platforms and vendors, including In-
tel, AMD, Arm, and IBM have rolled out or announced
support for VM-level TEEs [1], [2], [3], [4]. AMD Secure
Nested Paging (SEV-SNP) provides both confidentiality and
memory integrity of VM execution [1]. It is in production
on major cloud service providers, including Azure, Google
Cloud, and AWS [5], [6], [7] and has been applied to
security-sensitive workloads [8], [9], [10], [11], [12].

Since the cloud provider controls the hypervisor on a
cloud platform, TEEs such as AMD SEV-SNP deem this
privileged software to be untrusted. In the CVM setting,
the hypervisor is still responsible for configuration and
management of resources, including interrupts. This change
in the trust model strengthens the security guarantees by
enforcing that the hypervisor can no longer access the VM’s
memory or registers in plain text, thus protecting the VM.
However, this breaks several traditional systems abstractions
that are essential to execute VMs. For example, the VM
needs services such as CPUID and hypercalls from the
hypervisor, which is rendered impossible if the hypervisor
cannot access the VM’s state in unencrypted form.

To address this challenge, AMD SEV-SNP introduces
new interfaces between the untrusted hypervisor and the
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trusted VM. This allows the VM to re-enable the essential
functionality, while being able to control the use of the
interface and perform sanitization and correctness checks.
For example, the VM can selectively exchange data from its
own memory to a shared memory region with the hypervisor.
Further, to maintain performance and compatibility, AMD
SEV introduces a new exception called VMM Communica-
tion Exception (#VC) [13]. The CPU raises this exception
when the VM needs to communicate with the hypervisor.
This enables the VM’s exception handler to perform the
communication via the shared memory region transparently
without changing the guest kernel or applications. When-
ever the VM executes an instruction that require hypervisor
intervention (e.g., cpuid, rdtsc, memory mapped I/O),
the SEV-SNP hardware raises a #VC exception.

Our attack, called WESEE, abuses the #VC exception
to break the security guarantees of AMD SEV-SNP. Our
first observation is that the hypervisor can inject a malicious
#VC into a CPU that is executing a SEV-SNP VM at any
time. Specifically, the hypervisor has the ability to inject
external interrupts to the CPUs, including #VC which is
yet another exception. Our second observation is that SEV-
SNP invokes the #VC exception handler in the VM without
checking the authenticity of the root cause. Specifically, the
VC handler does not check if the VM indeed executed
an instruction that would legitimately cause the CPU to
generate a #VC exception. Our third observation is that the
VC handler performs sensitive operations of copying data
between the VM and the hypervisor to emulate the semantics
of the instruction that generated the #VC. The handler is
programmed to be bug-free and has checks to defend against
Iago attacks, i.e., it clears all registers and performs checks
on the data values provided by the hypervisor before it
uses them as per AMD specifications [14]. However, it is
not programmed to defend against #VC that is maliciously
injected by the hypervisor. Worse yet, each malicious #VC
injection tricks the handler into emulating an instruction that
either writes attacker-controlled data to the VM or leaks
sensitive VM data to the hypervisor.

WESEE shows that with each malicious #VC injection
from the hypervisor, the attacker can induce a basic prim-
itive operation on the victim guest VM. For example, by
faking a #VC for MMIO read, the attacker can achieve an
arbitrary memory write—the hypervisor can write any value
of its choice to any location in the victim VM. To achieve
each basic primitive, we address several challenges such
as ensuring that the victim VM does not crash (e.g., due
to existing sanitization checks) and identifying particular



execution points in the victim’s execution to inject malicious
#VC. We demonstrate 4 main primitives namely: skipping
instruction execution, leaking registers, corrupting registers,
and arbitrary read/write to VM memory.

Finally, WESEE shows that the attacker can inject sev-
eral malicious #VC to cascade the effect of the above basic
primitives (e.g., memory write followed by memory read).
We demonstrate several nuances that allow WESEE to (a)
inject consecutive #VCs before the VM resumes execution;
(b) inject nested #VCs while the VM is executing the handler
itself; and (c) combine consecutive and nested interrupts. Put
together, this allows WESEE to bring about highly expres-
sive attacks such as arbitrary code injection and execution.

We demonstrate the expressiveness of WESEE with three
end-to-end case studies. We leak kernel TLS session keys
for NGINX with the arbitrary read. We use arbitrary write
and code injection primitives to disable firewall rules and
open a root shell. Orchestrating these case studies requires
addressing challenges such as identifying suitable points of
execution in the victim VM. Prior works have shown that
AMD SEV-SNP is vulnerable to side channels that can be
leveraged to achieve single-stepping primitives. However,
WESEE does not require such high-resolution information
about the victim VM. Instead, we purely rely on the page
fault sequences of the victim VM to perform our end-to-end
attacks. We discuss potential software and hardware-based
defenses to thwart WESEE and argue for robust hardware
mechanisms to limit the hypervisor’s capabilities.

Heckler [15] and WESEE show that the hypervisor can
abuse the notification mechanisms, existing and new respec-
tively, to break CVM guarantees. These works points to a
family of attacks called Ahoi attacks,1where the attacker
sends malicious notifications, both in time and in value,
to trick the victim. Prior works that abuse timer interrupts
and page faults can also be classified as Ahoi attacks,
because they generate fake interrupts that allows the attacker
to observe side-effects (e.g., cache and timing). However,
WESEE and Heckler generate interrupts that lead to explicit
effect handler execution which directly update the global
state (registers and memory) of the victim.

In summary, we make the following novel contributions:

• WESEE abuses the #VC exceptions to break AMD
SEV-SNP.

• WESEE injects multiple well-crafted #VC excep-
tions into the victim VM to induce arbitrary reads,
writes, and code injection.

• We demonstrate three case studies for WESEE: leak-
ing kTLS keys for NGINX, bypassing the firewall,
and obtaining a root shell.

We responsibly disclosed our findings to AMD on 26
October 2023 and the cloud providers on 5 February 2024.
WESEE was assigned CVE-2024-25742.
WESEE tooling and PoC exploits are open-source at:
https://ahoi-attacks.github.io/wesee

1. Ahoi is a signal word to call a ship or boat. It is also an anagram of
Iago [16] with edit distance of one.

2. Overview

AMD SEV-SNP disallows hypervisors from accessing
guest VM registers and memory, thus necessitating #VC.

2.1. Background

AMD virtualization extensions (AMD-V), introduced in
2006, provide hardware support for the hypervisor to create
and launch guest VMs. Since the VMs cannot directly access
certain system resources (e.g., rdtsc), AMD-V allows the
hypervisor to set up intercepts on particular instructions to
manage and facilitate execution in the VMs.
Instruction interception for virtualization. Several opera-
tions in the guest VM—reads/writes to hypervisor-controlled
Model Specific Registers (MSRs) and memory-mapped de-
vices, accessing rdtsc, generic calls to the hypervisor—
require co-operation with the hypervisor. When a VM ex-
ecutes such an instruction, the CPU intercepts it and auto-
matically triggers a vmexit that is handled by the hyper-
visor. Therefore, the CPU’s instruction intercept mechanism
facilitates calls to the hypervisor when these operations
are performed in the guest VM. This mechanism is fast
and transparent to the guest VM as it does not require
the involvement of the guest kernel to support it. Further,
the CPU maintains a fixed set of instructions for which it
triggers a vmexit, that the hypervisor can handle [14].
For example, a guest VM uses the vmmcall instruction to
explicitly communicate with the hypervisor. First, the guest
VM sets up registers and memory that contain values to
indicate the reason to the hypervisor to process the VM’s
request. Then, the guest VM executes the instruction (e.g.,
vmmcall) that causes a vmexit to the hypervisor. Due
to the vmexit, the hypervisor’s handler is invoked where
it can directly read the registers and memory from the
guest VM and process the request. Since the hypervisor
is trusted in AMD-V, this mechanism allows the VMs to
execute unchanged while the hypervisor handles the special
instructions.
AMD SEV-SNP. AMD SEV-ES and its successor SEV-SNP
enable the creation and isolation of confidential VMs in
various cloud deployments [10]. In particular, AMD SEV-
SNP provides a hardware-based trusted execution environ-
ment that protects the memory and registers of the VMs and
renders them inaccessible to the hypervisor. This protection
breaks some existing abstractions (e.g., instruction intercepts
set by hypervisor). However, the isolated VM still needs
to communicate with the hypervisor to perform different
operations. To address this gap, SEV defines a strict protocol
to share data between the VM and the hypervisor using an
unprotected shared memory region called the Guest Hyper-
visor Communication Block (GHCB) [17].

2.2. Implications of Instruction Interception

AMD adds support for secure instruction interception
for VMs.2 We analyze the need for such interception and

2. VM is a shorthand notation for SEV-SNP VM unless stated otherwise.
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the security implications of this support in AMD SEV-SNP.
Need for #VC exception. When AMD SEV-SNP is enabled,
the hypervisor cannot directly access the VM registers and
memory. Therefore, to enable instruction intercepts, VM’s
data needs to be copied into the GHCB. However, this copy
to the GHCB is not performed automatically when the CPU
intercepts an instruction. There are several approaches to
solving this issue: In the first approach, the user application
in the VM is aware that it is executing in a VM and it
explicitly uses the GHCB APIs by calling the guest kernel
to copy data to the GHCB before exiting to the hypervisor.
This approach requires invasive changes to the application
code and breaks compatibility. In the second approach, the
guest kernel intercepts the instructions and performs the
GHCB API calls. This solution is cumbersome as the guest
kernel has no mechanism to determine which instructions
in the applications to intercept (e.g., mov instructions ex-
ecuted for MMIO). Therefore, this approach either needs
instrumentation of the application and the kernel or invasive
changes to the application. There is a third approach: if the
VM executes a specific set of instructions, the CPU raises a
special exception that is delivered to the VM’s kernel. The
VM can register a handler for this exception where it can
assess the reason for the exception and perform data copies
to the GHCB, such that the VM can communicate with the
hypervisor by performing a vmexit in the exception han-
dler. The hypervisor can then, in its own handler, access the
GHCB, perform the relevant operations, and save the results
in the GHCB. When the hypervisor returns control to the
VM, the guest VM kernel handler uses the results from the
GHCB and returns them to the user. If the hardware supports
a new exception, this is the best approach. It is transparent
to the user while the guest kernel can perform instruction-
specific data copies as well as enforce interface sanitization.
Therefore, SEV introduces a new exception called VMM
Communication Exception (VC) with interrupt number 29,
to facilitate VM and hypervisor communication. The AMD
SEV hardware has added support to intercept a certain set
of instructions from a VM. When such an instruction is
executed in the guest VM (user or kernel-space), the CPU
generates a #VC exception and sets the exit_reason
register to indicate the instruction that caused the exception.
The rest of the execution flow is software-based via the
VC handler in the guest and the vmexit handler in the
hypervisor where they use the GHCB as a shared memory
region according to AMD’s specification. Fig. 1(a) depicts
this and shows the pseudo-code and execution flow for #VC
handling.
Example: Supporting vmmcall with #VC. Consider an
application in the VM that executes a vmmcall to request
data from the hypervisor, as shown in Fig. 1(a). When
the VM executes a vmmcall, i.e., instruction that should
be intercepted by the hypervisor, the CPU triggers a #VC
exception (Step 1). Then the CPU sets a hardware register
exit_reason with the instruction (vmmcall) and raises
a #VC. As in the non-confidential case, the application in
the VM still sets up the rax register with the reason for
the vmmcall for the hypervisor to process the request.

...
copy reason 
 into rax
VMMCALL
...

SEV VM CPU Hypervisor

#VC

exit_reason
vmmcall

vc_handler():
case vmmcall:
  copy rax 
   into GHCB
  VMEXIT
  ...
  copy GHCB.rax
   into rax
  iret

do_vmexit():
  copy result 
   into GHCB.rax
  VMENTER

auth():
  ...
  copy keyapp 
   into rax
  ...

SEV VM CPU Hypervisor

#VC

exit_reason
vmmcall

vc_handler():
case vmmcall:
  copy keyapp 
   into GHCB
  VMEXIT
  ...
  copy keyhyp 
   into rax
  iret

do_vmexit():
  read keyapp 
   from GHCB
  write keyhyp
   into GHCB.rax
  VMENTER

inject #VC 
exception

(a)

(b)

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Figure 1. (a) Benign execution of #VC in SEV VM. 1. application sets up
rax and does vmmcall 2. CPU intercepts the instruction and raises #VC
with exit_reason set 3. VC handler copies values (rax) into GHCB
and exits to hypervisor 4. Hypervisor returns back to the VC handler which
copies values (rax) from GHCB 5. Return to application that caused #VC.
(b) Attack execution with WESEE.

When the #VC occurs, the execution returns back to the VC
handler in the VM (Step 2). The VC handler is responsible
for copying only the data required to process the vmmcall
into the GHCB based on the exit_reason register. For
the vmmcall, the handler only copies rax into the GHCB.
Therefore, it ensures that the #VC exception does not leak
information to the hypervisor. Finally, the handler does a
vmexit to return control to the hypervisor to process the
VM’s request (Step 3). Before resuming the VM execution,
the hypervisor writes the result of the vmmcall in rax of
the GHCB and returns execution back to the VC handler
(Step 4). Then, the VC handler in the VM only copies
the data requested based on the exit_reason register
into the application context. For the vmmcall, it only
copies the rax register back into the application. Finally,
the application that caused the #VC can resume execution
(Step 5). This process ensures that the hypervisor intercepts
function correctly without compromising the VM’s security.
Interrupt delivery to SEV-SNP VMs. The hypervisor
manages the delivery of interrupts for the VMs. It can
inject physical (e.g., timer interrupts) and virtual interrupts
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(e.g., virtio interrupts) to the VMs using the Interrupt
Controller. x86-64 treats interrupt vector numbers 0-31 as
exceptions [14], [18]. Therefore, the hypervisor can use the
interrupt controller to also inject the newly introduced #VC
at any time to any cores that are executing the VM.

2.3. WESEE Attack

An attacker with the ability to inject interrupts into
the VM (e.g., malicious hypervisor) can trigger a #VC at
any time during the VM execution. Further, the hypervisor
can write any value to the exit_reason register. More
importantly, this interrupt causes the guest to execute the
VC handler that examines the exit_reason, copies data
from the VM to GHCB, and then does a vmexit to
the hypervisor who can look at the data in the GHCB.
Furthermore, the VC handler also takes in the data provided
by the hypervisor and copies it from the GHCB into VM
memory. In other words, the hypervisor can misuse #VC
to execute the VM’s handler at any point during the VM’s
execution and compromise it. Using this insight, we present
WESEE attack that exploits the #VC to induce register and
memory copy operations between the malicious hypervisor
and the victim VM.
Example. Consider a victim application executing in a VM.
It authenticates a remote user by comparing an input key
(kin) with a secret key (kapp). Lst. 1 shows this simple
logic and Fig. 1(b) shows WESEE attack on Lst. 1.

1 mov rbx, $kin

2 mov rax, $kapp

3 cmp rax, rbx

4 jne deny

5 auth: ...

6 jmp fin

7 deny: ...

Listing 1. Example application

The malicious hypervisor does not know the value of
kapp and therefore is not authenticated to use the appli-
cation. With WESEE, the hypervisor can successfully au-
thenticate itself, thus breaking the SEV-SNP guarantees.
The application copies the value of kapp into rax (Line
2 in Lst. 1) before comparing it with kin (Line 3). The
hypervisor maliciously injects the #VC exception after Line
2. Fig. 1(b) Step 1 shows that the hypervisor can set the
exit_reason as vmmcall. This triggers the VC handler
in the VM, which copies the kapp from rax into the GHCB
and exits to the hypervisor (Step 2, 3). After this point
kapp is leaked to the hypervisor allowing it to authenticate
successfully using this input. Alternatively, with this attack,
the hypervisor can also write any value of its choosing
(khyp) into the GHCB’s rax to authenticate successfully.
Specifically, it writes its own key which it sent to the
application (kin) to the GHCB before returning to the VM’s
VC handler (Step 4). The VC handler then copies the value
of rax to the application and returns to it (Step 5). This
changes the value of rax in the application leading to Line

3 computing kin == khyp which will always be true as both
the values are controlled by the hypervisor. Therefore, the
hypervisor authenticates successfully and the auth block
is executed (Line 5). Our example shows how a malicious
hypervisor can use WESEE to compromise the execution
integrity as well as data confidentiality and integrity of the
VM, thus breaking AMD SEV-SNP.

3. WESEE Overview

The VC handler executes in a VM that the hypervisor
cannot modify or tamper with. To assess the potential of
WESEE, we manually analyze the Linux kernel v6.7-rc4
that implements the VC handler. Our analysis shows that
there are constraints on: (a) when the hypervisor can trigger
certain #VC (e.g., MMIO can only be triggered on a mov
instruction); and (b) what operations the handler performs
based on exit_reason (e.g., vmmcall can only read
and write rax). Therefore, to mount WESEE attacks, the
hypervisor has to ensure that it achieves its desirable effects
(e.g., change the value of rax to 0xdeadbeef) without
resulting in a VM crash. More importantly, the #VC handler
performs several other operations (e.g., masking registers
before copying to GHCB) and checks (e.g., checking the
operands of the instruction that caused the #VC) that either
hinder the attacker from achieving its desired effect by
causing check failures or result in excess execution (i.e.,
undesirable effects). Thus, we have to carefully craft the
exit_reason at a well-chosen execution point in the
VM such that we precisely induce the desirable effects of
#VC handling while avoiding any checks and undesirable
effects. WESEE aims to leverage the hypervisors’ ability to
inject multiple #VCs to cascade the desired effects of the
handler to bring about expressive attacks. For example, use
one #VC to change the rax value and then use another
#VC to change rcx value. While injecting multiple #VCs
is straightforward, doing so requires knowing when to inject
the next #VC while ensuring that the handler does not crash
(e.g., due to nested exceptions beyond a certain depth).

3.1. Analysis of #VC Handler

The VM’s VC handler copies different registers and
memory to and from the GHCB, based on the intercepted
instruction indicated by the exit_reason register. We
analyzed the VC handler in the latest version of the Linux
kernel (v6.7-rc4 as of this writing). It is implemented as per
the GHCB protocol specified by AMD SEV-SNP developer
manual [14] and handles 19 instruction intercept events.
Out of these, we found that 10 events lead to register and
memory copies (see Tab. 1). For example, in case of rdpmc
the handler sends values via register rcx to the hypervisor,
and copies values from the hypervisor into registers rax
and rdx. For the remaining 9 events, the VC handler does
not send or receive any data from the hypervisor. Of the 10
events, in WESEE, we only use the 3 events shown in Tab. 1
and show that they are sufficient to build strong attack
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TABLE 1. INTERCEPT EVENTS WITH #VC HANDLER IMPLEMENTATION IN SNP LINUX GUEST.
*: Register is masked before/after exchanged with the hypervisor, #reg: Register depends on the register used in the assembly instruction, GPA: Guest

Physical Address, vmgexit: Guest exits to the hypervisor.

Event Description Reg. copied
to Hyp

Reg. copied
from Hyp Sample Instr. vmgexit

Used in
WESEE

NPF MMIO Read Memory mapped I/O read - #reg mov rbx, [rax] ✓ ✓
NPF MMIO Write Memory mapped I/O write #reg - mov [rax], rbx ✓ ✓
VMMCALL Call to VM Monitor rax, cs* rax vmmcall ✓ ✓
RDTSC/ RDTSCP Read Time Stamp Counter - rax, rdx, rcx rdtsc ✓ ✗
RDPMC Read Perf. Monitor Counter rcx rax, rdx rdpmc ✓ ✗
RDMSR Read from MSR rcx rax, rdx rdmsr ✓ ✗
WRMSR Write to MSR rcx, rax, rdx - wrmsr ✓ ✗
CPUID CPU Identification rax*, rcx*, xcr0* rax, rbx, rcx, rdx cpuid ✓ ✗
IOIO PROT IO Ports (IN, OUT, INS, OUTS) rax* rax* in eax, 0 ✓ ✗
DR7 write Debug Control Reg. write #reg* - mov, dr7, rax ✓ ✗
RD7 read Debug Control Reg. read - - mov rax, dr7 ✗ ✗
INVD Invalidate Internal Caches - - invd ✗ ✗
WBINVD Write Back and Invalidate Cache - - wbindv ✓ ✗
MONITOR/ MONITORX Set Up Monitor Address - - monitor ✗ ✗
MWAIT/ MWAITX Monitor Wait - - mwait ✗ ✗
AC Alignment Check - - mov [0x1001], rax ✗ ✗

primitives such as arbitrary register reads/writes, memory
reads/writes, code injection.
Chaining multiple #VC. AMD SEV-SNP allows the hyper-
visor to inject consecutive #VCs to the same CPU. Consider
a case where the VM is executing a user program. The
hypervisor injects a first #VC and waits till the VM’s kernel
executes the corresponding handler. When the VM’s kernel
returns from the handler, the hypervisor can inject a second
#VC right before the user program resumes on the CPU. This
execution flow is feasible because each #VC handler sets up
its own stack and tears it down before returning. Thus, the
hypervisor can inject two consecutive #VCs and use them
to perform two different changes to the victim VM. For
example, Fig. 2 (a) shows how the hypervisor can change
rax and then rcx by chaining two #VCs. The hypervisor
can also inject #VCs in a staggered fashion, allowing the
application to execute a few instructions between the first
and the second #VCs. In our analysis, we did not find
hardware or software limitations on the number of #VCs that
a hypervisor can inject consecutively or with staggering.
Nesting #VC in non-critical section. The hypervisor can
inject a #VC while the guest kernel is executing a #VC han-
dler, thus causing nested interrupts. This is functionally safe
because each #VC sets up its own stack. More importantly,
from an attack perspective recall that a #VC handler changes
the state (register or memory) of the code that was executing
when the #VC was injected. In case of a nested interrupt, the
effects of the second #VC handler change the state of the first
#VC handler. As shown in Fig. 2(b), if the second handler
effects a change in rax, this influences the execution of
the first #VC handler that uses the modified rax. In our
experiments, we were able to nest to at least a depth of
3. We report that the hypervisor can also inject consecutive
nested interrupts to change various parts of the #VC handler
(e.g., we inject 2 consecutive nested interrupts of depth 1
in Fig. 2(b)). There is practically no limit to how many
consecutive nested #VCs the hypervisor can inject.
Nesting #VC in critical section. The #VC handler imple-
mentation has one critical section. In particular, the hypervi-

sor and the guest VM communicate via two shared buffers
as part of the GHCB. For correctness, in the case that the
hypervisor is benign, the handler synchronizes accesses to
these buffers to avoid race conditions with the VM. This
creates a critical section in the handler. In typical interrupt
handlers, it is standard to disable interrupts when executing
a critical section. In the case of the #VC handler, to our
surprise, we find that the hypervisor can inject nested #VCs
even in the critical section execution. In our experiments,
we were able to achieve a nesting depth of 1 in the critical
section for Linux kernel implementation. We investigated
if this was an implementation bug or an intentional design
choice. Our analysis shows that this is a necessary function-
ality to handle a particular case where both the operands of
a mov operations are memory addresses. Interested readers
can refer to Appx. A for details.

In summary, there are several cases in the VC han-
dler that we can leverage to change or read registers and
VM memory. The ability to chain and nest #VCs allows
us to achieve a cascading effect akin to return-oriented-
programming (ROP).

3.2. Challenges & decisions

If the hypervisor can corrupt memory and registers of the
VM, then we can build powerful attacks. Next, we outline
the challenges in achieving our goal, especially when the
hypervisor has limited access to the VM. We identify the
best ways to use #VC to mount our attacks and provide
rationale for our choices of what to exploit.
Challenge 1: Targeted #VC injection. To perform a mean-
ingful attack using #VC, we first need to identify instructions
in target programs that would result in a meaningful effect
as a result of the #VC. In our example from § 2.3, changing
the value of rax on Line 3 in Lst. 1 leads to the attacker
successfully authenticating the target program. Once we
have identified the target instruction, we should time the
#VC such that it is injected just before our target instruction
is executed. There are two nuances that we need to address.
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1. mov rax, rcx
2. test rax,rax
3. je 0xFFA0

change
rax

app ctx

Application

1. vc_handler():
2.   rax = do_check(...)
3.   if (rax != 0)
4.     goto fail
5.   // clobber rax
6.   rax = get_ptr(...)
7.   rax = *rax
8.   copy rax into GHCB
9.   VMEXIT

#VC 1

#VC 2

#VC1 handler

change
rax

#VC1 ctx

change
rax

#VC1 ctx

#VC 2

#VC 3

(a)

(b)

change
rcx

app ctx

1.

2.

3.
4.

Figure 2. (a) VC chaining. VC1 changes rax, VC2 changes rcx. (b) 1-
level VC nesting.

First, when we trick the VC handler into accessing certain
pages, it might cause stage-1 or stage-2 page faults. If a
stage-1 page fault occurs during VC handling it will crash
the VM. Therefore, WESEE has to ensure that this never
happens. In contrast, stage-2 page faults are not an issue
because the hypervisor can always ensure that the pages with
the addresses of interest are paged in when the VC handler
executes. Second, some pages in the kernel have limited
permissions (e.g., .text section is not writable). If our
attack attempts to write to these pages, it will cause a page
fault and crash the VM. As we will show in § 4.5, WESEE
gets around this limitation by changing the page permissions
before it triggers an access to such a page, avoiding a crash.
Challenge 2: Constructing primitives using handler ef-
fects. The VC handler performs different checks and induces
different side-effects depending on the exit_reason. For
example, the vmmcall handler checks the return value of
the perform_VMEXIT function. This function looks up
the exit_reason and then performs a series of checks.
If the checks pass, it returns OK. For vmmcall, the VC
handler checks that the hypervisor has written a value into
rax of the incoming GHCB. Therefore, this reason is
controlled by the hypervisor making it easy to get around the
check in Line 3 in Fig. 2 (b). However, there might be other
checks in the VC handler that access protected memory

which cannot be influenced by the hypervisor. For example,
the handler looks up the last instruction that was executed
and reads the value of the register used as an operand to that
instruction. The last instruction and the value of its operand
are stored in the application context that is protected and
cannot be controlled by the hypervisor. Such checks could
crash the handler, thwarting our attack. Therefore, to build
WESEE primitives we should carefully choose and chain the
handler effects to avoid such crashes.
Insight 1: Using only two exit_reasons. While there
are more expressive effects of the VC handler (e.g.,
rdpmc, cpuid), we find that the handling of intercepts for
vmmcall and MMIO is sufficient to build powerful attack
primitives. Further, handling these intercepts does not have
many side-effects (e.g., changes to memory, changes to reg-
isters) and checks that would otherwise corrupt execution.
So, they can easily be used to build WESEE primitives.
Insight 2: Limiting to kernel memory. The hypervisor
can raise #VC while executing in both the user and kernel
space. Therefore, the hypervisor can use #VC to leak or
tamper both user and kernel space registers and memory.
However, using #VC to attack user-space applications is
more challenging than compromising the kernel execution.
First, since the VC handler is executed in the kernel space,
the memory accessed from the handler should be mapped
in the kernel. User-space application memory is not mapped
as-is in the kernel and therefore the VC handler cannot use
the userspace virtual address to access it. The attacker needs
to either perform the address translation using the process’s
page tables or single-step the victim process’s lifecycle to
track the virtual to guest physical address (GPA) mapping,
such that it can supply the GPA. Second, determining when
to inject the #VC exception for user-space applications is not
straightforward. For example, in Lst. 1 the hypervisor should
inject the #VC exception after Line 3. Determining when
this instruction is executed in user-space requires a single-
stepping primitive at instruction granularity. In contrast,
targeting the kernel space does not incur such challenges.
In the kernel space, the pages of the .text segment are
mapped contiguously during boot and therefore we can
easily compute the address and page of the instruction we
want to trigger the #VC on. Therefore, to determine when
to inject the #VC exception while executing in the kernel
only requires using page faults to profile the pages that are
being executed. Since the hypervisor controls the stage-2
page tables of the VMs, profiling with page faults is easy.
Thus, we focus on building our attack primitives and case
studies using kernel space code.
Insight 3: Target instructions executed after page fault.
In SEV, the hypervisor manages the stage-2 page tables for
VMs and handles page-faults. We can use this mechanism
to induce page faults by marking pages as non-executable
in the VM to observe the pages that are executed. We use
this page tracing technique to time the #VC injection. First,
we limit our attack primitives to target instructions that are
executed when jumping or returning from another page (e.g.,
a call instruction that returns execution from another page,
the target of a jmp instruction). Therefore, we can use the
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1. call authenticate
2. test eax,eax
3. jne fail
4. auth:
5.   ...
6. fail:

1. authenticate:
2.   ...
3.   jmp auth
4.   ret

vc_handler():
  ...

Pagec Pager

#VC

Figure 3. Timing the #VC injection. 1. Hypervisor observes page fault
sequence [Pagec, Pager , Pagec ] and injects #VC when Line 4 returns. 2.
This triggers the execution of the VC handler, which when done returns
back to the application on Pagec

page tracing technique to detect when the execution returns
to our target page and inject a #VC. For example, consider
a target program that performs authentication by calling an
authenticate function and then tests its return value
(see Fig. 3). The hypervisor can use #VC with vmmcall to
change the value of rax as explained in § 2.3. Therefore, to
corrupt the return value of the authenticate function we
should target our #VC injection to when the function returns
i.e., on the line after the call instruction. To identify when
the authenticate function returns, the hypervisor marks
pages Pagec containing the target instruction and Pager
containing a return to the target instruction as not executable.
Then, when the hypervisor observes a page-fault trace of the
pattern [Pagec, Pager, Pagec], it knows that this is the re-
turn from the authenticate function. Therefore, before
resuming execution of the target program by marking Pagec
as executable again, the hypervisor injects the #VC. While
this choice limits the instructions that WESEE can target,
we show that it is sufficient to build powerful primitives
and mount attacks on VMs.
ASLR. The kernel uses different Address Space Layout
Randomization (ASLR) to thwart attacks that rely on deter-
ministic addresses. To use our page-tracing technique and
build attack primitives that target specific addresses we need
to break these address randomization techniques. We use
insights from previous works that have explained techniques
to defeat the kernel’s physical ASLR. This does not require
#VC or other WESEE primitives. We use WESEE primitives
to defeat virtual address space ASLR (see § 5.2).

3.3. Threat model

We assume an untrusted hypervisor creates and launches
AMD SEV-SNP VMs. The trusted hardware generates an at-
testation report. AMD SEV-SNP’s trusted hardware ensures
that all memory and registers of the VM are protected and
encrypted. Further, on context switches the trusted hardware
saves and restores the context of VMs. It also ensures that
all register states are cleared before resuming execution of
other untrusted code. We assume that all trusted software
in the VM, including the VC handler, and hardware are
free from bugs. To communicate with the hypervisor, the
VM sets up shared-memory (GHCB) according to AMD
specification. We assume that the VM uses the GHCB

strictly in accordance with the AMD specification and is
bug free. The hypervisor is still responsible for interrupt
delivery and memory management for the VMs according
to AMD specifications, and can observe page faults. We as-
sume that all cryptographic algorithms used by AMD SEV-
SNP are secure. We do not assume any other architectural,
microarchitectural, power, or voltage side-channels.

4. WESEE Primitives

We build basic primitives either by using one #VC’s
effects or by cascading #VCs. Our main challenge is to
use the #VC to induce the desired effect while avoiding
the #VC’s undesired checks and effects. For example, using
exit_reason as vmmcall and writing to rax requires
passing certain checks as explained in § 3.2. First, we build
a primitive to skip instructions using the #VC handler’s
effect (§ 4.1). Next, we observe that the #VC handler leaks
rax and writes to rax when exit_reason is set to
vmmcall. With these effects we build primitives that read
and write to rax (§ 4.2). Further, we use these primitives
to induce desired effects (e.g., change rax to an attacker
controlled value) and avoid undesirable effects (e.g., skip
checks that would otherwise jump to a fail block) while
building more powerful primitives. Further, we build primi-
tives to read and write to kernel memory using MMIO read
and write handling effects in the #VC handler (§ 4.3 and
§ 4.4). Finally, we show how WESEE uses these primitives
to inject arbitrary code into the kernel (§ 4.5).

4.1. Skipping Instructions

We build a basic primitive S that uses #VC to skip over
an arbitrary instruction during the VM’s execution. Such a
primitive can be used to bypass checks and negate undesired
effects in a target program (e.g., to skip over an instruction
that jumps to a fail block).
Skip one instruction. During normal operation, the CPU
does not move the instruction pointer past the instruction
that caused #VC, to give the application an opportunity to
retry the instruction if it fails. Therefore, in Fig. 1(a) the
return from the VC handler would result in the vmmcall
instruction executing again on Step 5. Therefore, the VC
handler always has an effect which advances the instruction
pointer. Depending on the type of the #VC, the VC handler
could have other effects (e.g., updates to registers, writes
to memory). An attacker can induce the effect in the VC
handler that increments rip and use #VC to build a skip
primitive (S) that skips arbitrary instructions.

WESEE should ensure that the skip primitive does not
have any other undesired effects (e.g., changes to register
values) that can corrupt the target application’s execution.
Therefore, we use a #VC with exit_reason set to
vmmcall to build this primitive. Handling the vmmcall
has only one other effect besides incrementing rip; it leaks
the values of rax to the hypervisor and writes a value
from the hypervisor to rax as shown in Fig. 4 (Lines 3,
6). Because the vmmcall handling writes the value from
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the hypervisor to rax, the attacker can always ensure that
this effect does not corrupt any state in the application.
Specifically, when the VC handler exits to the hypervisor,
the hypervisor first reads the value of rax from the GHCB.
Then, it copies this value back to the GHCB to be read
by the VC handler for vmmcall. This ensures that the
value in rax remains unchanged. Next, the VC handler
only increments the rip if the call from the hypervisor
was successful i.e., for vmmcall the hypervisor wrote a
value into the rax field of the GHCB (Line 11 in Fig. 4).
Therefore, for vmmcall this is fully controlled by the
hypervisor. Specifically, by copying the value of rax into
the GHCB, the hypervisor also ensures that the function
on Line 4 always returns OK. The VC handler does not
increment the rip by a fixed number of bytes. Instead,
it looks up the last instruction that was executed from
the program context. Then, it computes the size of that
instruction and the number of bytes to increment (Line 10)
ensuring that a full instruction is always skipped.
VC chaining: Skip n instructions. The hypervisor can
chain the skip primitive to skip any number of consecu-
tive instructions. For this, it pauses the execution of the
target program by marking the page that the VC handler
returns to as non-executable. This ensures that every time
the VC handler returns to the target program, a page fault
is generated. The hypervisor then uses the skip primitive to
skip 1 instruction on each page fault of the program. The
VC handler looks up the current instruction that rip points
to (Line 10 in Fig. 4), which ensures that each subsequent
instruction is skipped correctly irrespective of its length.

4.2. Read & Write rax.

Using malicious #VCs, we build WESEE primitives to
read and write to rax. Return values from function calls
are stored in rax which makes it particularly interesting.
Therefore, leaking or tampering the value of rax can be
used to construct powerful attacks.
Read & Write rax and skip 1 instruction. As explained
in § 2.3, a malicious hypervisor can use the #VC to read and
write the rax register at any point during the instruction ex-
ecution. Further, as discussed in § 4.1, the VC handler has an
effect of incrementing the rip. We build attack primitives
RraxS and WraxS that read and write to rax respectively
and then skip 1 instruction. To build these two primitives, we
simply inject one #VC with exit_reason as vmmcall.
This will leak the value of the target program’s rax (Line
3 in Fig. 4) and copy a value from the hypervisor into the
rax of the target program (Line 6 Fig. 4) and skip one
instruction. Even though we define WraxS as a separate
primitive, the VC handler always leaks the value of rax
(Line 3 in Fig. 4) and therefore WraxS implicitly always
reads rax as well.
Read & Write rax without skipping. The effect of incre-
menting the rip in RraxS and WraxS is sometimes not de-
sirable while building attacks where we want to execute the
instruction that we injected the #VC on. To negate the rip
increment effect we build 2 more primitives Rrax and Wrax

 1. switch(exit_reason):
 2.   case vmmcall: desired side-effect to leak rax
 3.     ghcb_set_rax(ghcb, ctxt->regs->ax) //write rax to ghcb
 4.     ret = perform_VMEXIT(ghcb)
 5.     if (ret == OK) desired side-effect change rax
 6.       ctxt->regs->ax = ghcb->rax; //read rax from ghcb
 7. ... //function call
 8. switch (ret) //ret is return value of exit_reason handling
 9.   case OK:
10.     n = compute_size(ctxt->rip)
11.     ctxt->rip = ctxt->rip + n
12.   case ...: ...
13.   case RETRY:
14.     //no rip increment
15. return ret; //instruction return (iret)

15
instructions
skip using
15 S

Figure 4. Psuedo-code of VC handler with effects.

that read and write to rax respectively without skipping an
instruction. Negating the undesired rip increment effect is
not straightforward. Notice that the rip is not incremented
if the return value on Line 4 in Fig. 4 is RETRY (Line 13).
However, the hypervisor cannot force this condition on Line
4 for vmmcall handling. Instead, to negate the instruction
skipping effect, we construct a mechanism that skips all
instructions (15 instructions) starting from Line 8 to Line 13.
This ensures that the VC handler executes the RETRY case
even though the return value on Line 4 was OK. With this,
the desired effect on Line 3 for Rrax and on Line 6 for Wrax

is preserved and the undesired effect on Line 11 is negated.
To skip these instructions, we use a single-level of nesting
using the skip primitive (S). We chain the skip primitive 15
times in succession. Therefore, (RraxS).15S ≡ Rrax and
(WraxS).15S ≡ Wrax. This ensures that the rip is not
incremented and the VC handler simply returns back to the
target program. To decide when to inject the first S primitive
in the chain, we notice that the VC handler performs a call
to a function (Line 7) before our target instruction on Line
8. Therefore, we use our page-trace mechanism to inject the
first S on the return of this function call.

4.3. Reading kernel memory

The attacker can use #VCs to read values from any
kernel memory (Rmem). To successfully read any kernel
memory of the attacker’s choosing, the attacker needs 2
capabilities: (a) control a pointer to kernel memory, and
(b) dereference the attacker-controlled pointer and copy the
value to the GHCB. We observe that the attacker can use the
VC handler’s MMIO write case to gain these capabilities.
During normal operation, the CPU invokes the #VC for
MMIO write when a mov instruction copies a register value
to a memory-mapped region (e.g., mov [rdi], rbx
where [rdi] points to a memory-mapped region). To
enable the hypervisor to perform the actual MMIO write,
the handler copies the value of the target program’s register
into the GHCB as shown in Fig. 5 (Line 6). To perform
the memory copy, the handler first fetches a pointer to the
program’s context on stack (Line 2) and then de-references it
(i.e., memcpy dereferences rax). Our main intuition is that
we can use the primitives that write to rax to gain control
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handler description
 1. if (check_decode_mmio_insn())
 2.   rax = get_ptr(ctxt->rbx)
 3.   r14 = rax
 4.   ... //rax gets clobbered
 5.   rax = r14
 6.   memcpy(rax, ghcb->buf)
 7.   rax = get_pte(ctxt->rdi)
 8.   if (!rax)
 9.     terminate_VM()
10.   if (rax->PAGE_ENC != 1) 
11.     ghcb->gpa = rax->gpa
12.     perform_VMEXIT(ghcb)

mmio_write_func()
 1. decode instruction at context rip
 2. get pointer to rbx of the application context
 3. save rax in r14
 4. clobber rax
 5. restore rax from r14
 6. copy value of application rbx to ghcp
 7. get PTE for MMIO page [rdi] (cause of the VC)
 8. check if page walk was successful
 9. terminate VM in case of failure
10. check that rdi is marked as MMIO page
11. copy physical address of page to ghcb
12. exit the VM and let the hypervisor do the MMIO

 1. -
 2. use W      to set rax to VA
 3. -
 4. -
 5. -
 6. -
 7. use W     S to set rax to VA
 8. skipped
 9. use S to skip
10. check succeeds due to step 7
11. -
12. -

attack steps
 1. -
 2. rax <- VA
 3. r14 <- VA
 4. - 
 5. rax <- VA 
 6. buf <- *VA
 7. rax <- VA 
 8. - 
 9. -
10. -
11. -
12. -

attackdataflow

(a) (b) (c) (d)

s
e
c
r
e
t
!
!

RAM

0
x
.
.
0
.
.

VAsecret

VAvalid

(e)

secret
secret

secret
secret

valid

rax secret

rax valid

PAGE_ENC
position

Figure 5. Read memory primitive. (a) Handler description for #VC caused by instruction mov [rdi], rbx. (b) Pseudo-code of MMIO write handling.
(c) Attack steps. (d) Attack dataflow. (e) Memory used for attack.

of the pointer in the VC handler before it is dereferenced.
When the pointer is dereferenced, the VC handling for
MMIO writes will copy a value from the attacker-controlled
pointer to the GHCB. This satisfies the 2 capabilities the
attacker needs to successfully read kernel memory. Next,
we explain the benign MMIO write case in the VC handler
shown in in Fig. 5 (a) and (b).
Benign execution of VC handler for MMIO write. To
ensure that the hypervisor can perform the MMIO write
operation correctly, the VC handler’s MMIO write case
copies the value of the register to write and the guest
physical address of the MMIO region to the GHCB. To
determine the register and the region of memory, the handler
first decodes the last instruction that was executed in the pro-
gram’s context which caused the #VC (Line 1 in Fig. 5). The
handler has these checks because it expects the instruction
that caused the #VC to be a mov instruction that performs
a write to memory. The code-snippet in Lst. 2 shows this
check (Line 3). Further, once the instruction is correctly
decoded, it also sets the operands of the instruction (Line
6) in the VC handler’s stack.

1 check_decode_mmio_insn():

2 type = decode(ctxt -> insn)

3 if (type != MMIO_WRITE)

4 goto fail

5 // sets the instruction operands

6 get_insn_operands()

Listing 2. Pseudo-code for check and decode mmio instructions
during MMIO write handling

After determining the operands, the VC handler needs to
copy the value of the register to the GHCB. When an excep-
tion occurs the hardware pushes the context of the program
that caused the exception on the exception handling stack.
Therefore, to get the value of the register, the VC handler
fetches a pointer to the register in the program’s context
and uses memcpy to copy the value in the register to the
GHCB’s buffer (Line 6 in Fig. 5(b)). Then, to determine the
GPA of the memory-mapped region, the handler performs a
page-walk to get the page table entry (Line 7 in Fig. 5(b)).
It checks that the page table entry is valid (Line 8) and that

the memory-mapped region is in plaintext and in hypervisor-
accessible memory (Line 10). It finally exits the VM to go
to the hypervisor. In summary, handling the MMIO write
has 2 side-effects : (a) dereference a pointer to memory and
copy its value to the GHCB, and (b) copy a valid GPA of
an unencrypted memory region to the GHCB.

The first effect that dereferences the pointer in memory
and copies the value to the GHCB is desirable and can
be used to gain the 2 capabilities that the attacker needs.
However, for Rmem the checks and effects that result from
copying a valid GPA to the GHCB need to be negated.
Building the read-memory primitive (Rmem). To build
the read-memory primitive, we start with a #VC with
exit_reason set to mmio which triggers the VC handler
for MMIO write. We need to ensure that the 2 capabilities
that the attacker needs to read kernel memory are satis-
fied. The attacker should control a pointer while handling
MMIO, and this pointer should be dereferenced and copied
to the GHCB. We can achieve this by writing an attacker-
controlled pointer address into rax when the function on
Line 2 in Fig. 5 returns. The attacker-controlled pointer in
rax is then dereferenced by the memcpy on Line 6 which
copies the value (8 bytes) to the GHCB buffer. The rax is
first saved to r14 (Line 3) and then restored (Line 5) before
performing the memcpy. Therefore, it is important for our
primitive that the write to rax on Line 2 does not skip
the next instruction on Line 3. Therefore, we use the Wrax

primitive to change the value of rax when the get_ptr
function returns (Line 2). With this we have achieved the
desired effect of controlling a pointer to memory, and cor-
rectly copying it to the GHCB.

However, handling the MMIO write has another unde-
sired effect. It performs a page-walk (Line 7) and checks the
page table entry (Line 8, 10) before performing a vmexit.
If the page-walk or the checks fail, the handler returns an
error and does not perform the vmexit to the hypervisor.
Therefore, in our read-memory primitive, we need to ensure
that the side-effects and checks are negated and the VC
handler sucessfully exits to the hypervisor. We observe that
the result of the page walk on Line 7 is saved into rax. We
can use our primitive that writes to rax again to change
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the value of rax such that it passes the checks on Lines
8 and 10. Here, we opt to nest the primitive that writes to
rax and skips 1 instruction (WraxS). This implies that the
instruction that performs the check on Line 8 is skipped.
However, to fully bypass the check we should ensure that
one more instruction on Line 9 is skipped using the skip
primitive (S). With this, we have successfully bypassed
the first check. The second check (Line 10) ensures that
the memory-mapped region is in unencrypted memory by
checking the PAGE_ENC bit of the page table entry. This
is a simple memory dereference at an offset from the base
address in rax. Therefore, we identify a region of memory
in the kernel such that the value at this offset is always 0.
We set it as the address in rax before get_pte returns
on Line 7. This will guarantee that the check on Line 10
will pass. The rax is dereferenced once more on Line 11
to write the GPA to the GHCB buffer. However, for our
Rmem this value is not important. Therefore, MMIO write
handling will gracefully exit to the hypervisor.

Fig. 5 only shows the pseudo-code of the VC handler
for MMIO write. For simplicity, we show the checks on
Line 10 to be inlined after the check in Lines 8 and 9. In
the Linux implementation, the check represented on Line 10
is in a different function. Therefore, we cannot use a chain
of skip primitives to skip all instructions from Lines 9–12
to perform the vmexit. Instead, we detect the return from
the functions using our page fault tracing method and then
inject subsequent #VCs as described above.
Target instruction for Rmem. We identify a target mov
instruction that writes register values to memory in the
scheduling subsystem of the kernel. This instruction is on
the hot path of the kernel’s execution and is frequently
executed. Furthermore, this instruction is executed after a
jmp from another page. Therefore, we use the page fault
profiling as explained in § 3.2 to identify the page fault
sequence and time the #VC with exit_reason as mmio
to trigger the read-memory primitive (Rmem).
Reading n bytes of kernel memory. Rmem only reads 8
bytes of memory from the kernel. To read more memory,
we pause the execution by marking the page of our target
instruction as non-executable. Then on each page fault of
our target instruction, we use Rmem. Using this, we can
chain Rmem to read kernel memory in 8 byte chunks.

4.4. Writing to kernel memory

We can use #VC to build a primitive that writes arbitrary
data to arbitrary addresses in the kernel memory (Wmem).
For this, the attacker needs 2 capabilities, similar to the read
primitive: (a) control a pointer to kernel memory, and (b) the
attacker-supplied value in the GHCB should be copied to the
attacker-controlled pointer. We observe that the hypervisor
can achieve these capabilities using the MMIO read case.
During normal operation, this handler is triggered on a mov
instruction that reads a value from memory into a register.
Therefore, similar to the MMIO write case, the read case has
2 effects: (a) it fetches a pointer to the program context and
then copies the value from GHCB into the register, and (b)

 1. if (check_decode_mmio_insn())
 2.   rax = get_ptr(ctxt->rbx)
 3.   r14 = rax
 4.   ... //rax gets clobbered
 5.   rax = get_pte(ctxt->rdi)
 6.   if (!rax)
 7.     terminate_VM() 
 8.   if (rax->PAGE_ENC != 1)
 9.     ghcb->gpa = rax->gpa
10.     perform_VMEXIT(ghcb)
11. rax = r14 
12. memcpy(ghcb->buf, rax)

mmio_read_func()
 1. -
 2. rax <- VA
 3. r14 <- VA
 4. - 
 5. rax <- VA
 6. -
 7. -
 8. -
 9. -
10. -
11. rax <- VA
12. *VAtarget = buf

attackdataflow

(a) (b)

target
target

valid

target

 1. -
 2. W
 3.
 4. - 
 5. W    S
 6. -
 7. S
 8. -
 9. -
10. -
11. -
12. -

primitive

(c)

rax

rax

Figure 6. Write memory primitive. (a) Pseudo-code of MMIO read han-
dling. (b) Attack dataflow. (c)WESEE primitives used for attack

it copies a valid GPA to the GHCB. This allows the benign
hypervisor to read data from the memory-mapped region,
send it to the VC handler which then copies the data into
the register.

To achieve the attacker’s objectives of writing to an
arbitrary address in the kernel, WESEE first uses the Wrax

primitive to get hold of an attacker-controlled pointer (Line
2 in Fig. 6). This pointer is then dereferenced (on Line 12)
when the handler copies attacker supplied data from the
GHCB into the attacker-controlled pointer address. Finally,
as with Rmem, WESEE chains WraxS and S to negate the
undesirable checks and side effects on Lines 6 and 8. With
this, the value from the hypervisor (8 bytes) in the GHCB
is copied into a kernel memory location that is controlled
by the hypervisor.
Target instruction for Wmem. We identify a target mov
instruction in the kernel’s scheduling subsystem, that writes
a value from memory to a register and is also the first
instruction executed after a return from another page. There-
fore, we time the injection of Wmem using our page trace
mechanism. Further, to write more than 8 bytes to kernel
memory, we pause the execution of the target instruction by
marking the page as non-executable. Then we chain Wmem

to write to kernel memory in 8 byte chunks.

4.5. Arbitrary code injection

Using WESEE primitives explained so far, we can per-
form arbitrary code injection in the kernel. To inject code to
be executed in the kernel, we need to write to the .text
section. By default, the kernel sets up its page tables such
that the .text section is executable but not writable. To get
around this constraint, we first use our Rmem and Wmem

primitives to change the permissions in the kernel page
tables. For this, we first read the value of the kernel’s CR3
using the read memory primitive. This value indicates the
base address address of the kernel’s page tables. We identify
the virtual address of the target page where we want to inject
our code in the kernel’s .text section. We then use Rmem

to perform a page walk starting from the base address to
this page. At each level of the page table, we use Wmem

to change the permission of the page to be writable. Once
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...
phys_kaslr_base = PKbase
virt_kaslr_base = VKbase
...
PElast:
   ...
  jmp *rax  // ud2

.text
  insn

.rodata
  page_offset_kaslr_base
  vmalloc_kaslr_base
  vmemmap_kaslr_base

early boot image 
(no KASLR)

main image 
(vKASLR and pKASLR)

PA = PKbase
VA = VKbase

Figure 7. Kernel boot images and KASLR. The red instruction is inserted
by the hypervisor for offline profiling.

all the permissions are changed, our target page is writable.
Finally, we can write shell code using a chain of Wmem

to the target page. It remains to show how we execute our
injected code in the VM. This depends on where the code
is injected as shown in our case studies (§ 6).

5. Bypassing ASLRs

Address Space Layout Randomization (ASLR) is a sim-
ple way to stop attacks that rely on deterministic addresses.
Linux uses ASLR for both physical and virtual addresses.

5.1. Physical kernel ASLR (pKASLR)

The physical ASLR protection in the kernel (pKASLR)
randomizes the physical address where the kernel is loaded
for every kernel boot. Previous works explain techniques to
break pKASLR of SEV-ES VMs using page faults observed
by the hypervisor [19], [20]. We use insights from these
works to build an attack that compromises the pKASLR
of SEV-SNP VMs. To compromise pKASLR we do not
need any WESEE primitives but just the page fault tracing
technique in the hypervisor.
Overview. The pKASLR base is the address of the first
page of the main kernel image (PKbase). The kernel memory
is allocated contiguously from this base address. So, the
address of every page in kernel memory is a fixed offset
from PKbase. Therefore, to compromise pKASLR we simply
need to determine the value of PKbase. To do this, we
analyze the Linux kernel’s boot process. We find that before
the main kernel image is loaded, an early boot image sets
up PKbase by choosing a random address [20]. Then, it
loads the main kernel image at this random base address
and jumps to it (see Fig. 7). Crucially, this early boot
image which sets up the base address is not subject to
any ASLR protection. Therefore, for every execution of the
Linux kernel, the physical addresses of the early boot image
remains constant. We can use this insight to find PKbase by
profiling the kernel boot. Specifically, if we determine the
address of the last page that the early boot image executes
(PElast), then the very next page that is executed will always
be PKbase (see Fig. 7).
Attack steps. To find PElast, we modify the early boot
image and replace the jmp *rax in Fig. 7 with a dummy

instruction ud2. This step can be performed by the hyper-
visor offline without the victim’s knowledge. We boot this
modified kernel image and induce page-faults for each page
executed during kernel boot. This enables us to gather a page
trace of all the pages executed during the kernel boot and
their corresponding physical addresses. Using this page trace
we determine the physical address of the last page (PElast)
that is executed by the early boot image. Because the early
boot image is not subject to ASLR, PElast is constant across
all boots of the Linux kernel.

Next, we boot the unmodified victim kernel image that
contains the jump from the early boot image to the main
kernel image (see Fig. 7). Now, the page executed right
after PElast is the physical address of the main kernel image
(PKbase) which we want to de-randomize. Therefore, we
can deterministically leak the value of PKbase compromising
pKASLR.

5.2. Virtual Kernel ASLRs with WESEE Primitives

Like physical ASLR, the Linux kernel randomizes the
addresses of its virtual address space using virtual ASLR
(vKASLR). Once we have compromised pKASLR, we can
compute the physical address of any function in the kernel.
Our main insight to compromise virtual ASLR (vKASLR)
in the kernel is to find an instruction during the kernel’s
execution that loads the virtual address of a kernel’s function
into rax. At this point, we can use our Rrax primitive, to
leak the virtual address of the function. We observe that
the kernel sets up its virtual address space such that the
kernel memory is contiguous in the virtual address space.
Therefore, we can compute the base of the virtual kernel
ASLR (VKbase) as a fixed offset from the function’s virtual
address that we leak.

We analyze the kernel and find an instruction in the
secondary_startup_64 routine that loads the virtual
address of the function x86_64_start_kernel into
rax (Line 2 in the code snippet below).

1 xor ebp, ebp

2 mov rax, [rip + offset]

3 push rax

4 ret

We inject Wrax right after ret on Line 4 to leak the
virtual address of x86_64_start_kernel. Using this,
we compute the value of VKbase as a fixed offset from the
x86_64_start_kernel function.

The Linux kernel randomizes regions for the identity
map (page_offset), vmalloc, and vmemmap sepa-
rately [21]. The randomized base address for these regions
is stored in the .rodata section that is only subject to
vKASLR. Therefore, once we have compromised vKASLR,
we can compute the virtual addresses of all the base ad-
dresses and use Rmem to leak their values.

6. Case studies
We present 3 case studies that use WESEE primitives.

Our case studies do not need profiling beyond page faults.
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 1. tls_context* tls_ctx_create (struct sock *sk){
 2.   //context embeds crypto_info  
 3.   ctx = kzalloc(sizeof(*ctx, ...);
 4.   return ctx;        Rrax to leak VA of ctx
 5. }
 6. tls_context*
 7. do_tls_setsockopt_conf(struct sock *sk...){
 8.   ...
 9.   // call to a different page; populates crypt_info
10.   tls_set_sw_offload(sk,...)
11.   return ctx; Rmem to leak crypto_info
12. }

App
1. setsockops(ktls_setup)

create a socket with
kTLS offload

2. setsockops(conf)

send crypt_info

ctx {
 ...
 crypt_info{ keys, iv, salt}
}
 

Figure 8. kTLS offload in the Linux kernel.

6.1. Leaking keys from Kernel TLS

The Linux kernel allows userspace applications to of-
fload TLS computation to the kernel. This boosts perfor-
mance by reducing the number of data copies from user to
kernel space. To use the kernel TLS offload, the userspace
uses the system call setsockopt to indicate to the kernel
to hook on packets sent through a particular socket (Step
1 in Fig. 8). Then, the userspace application performs the
TLS handshake to setup symmetric session keys. Once the
symmetric session keys are setup, the application transfers
the keys along with all the information required by the ker-
nel (session key, IV, salt, and sequence number) to encrypt
and decrypt the session packets. The application sends the
struct crypto_info using the setsockopt system
call (Step 2) to send this data to the kernel. We aim to
leak the crypto_info using Rmem to read this struct
such that we can encrypt and decrypt any session packet
compromising the TLS session.

To perform an end-to-end attack, we need to find the
virtual address of the crypto_info struct for the target
socket. The userspace first creates the socket and establishes
the kernel TLS using setsockopt (Step 1 Fig. 8). On
receiving this system call, the kernel allocates kernel mem-
ory for the socket context using kzalloc which returns a
pointer to the memory in rax (Line 2). The context structure
contains the crypto_info struct for the socket as shown
in Fig. 8. Therefore, we leak the virtual address of the
socket’s context using the read rax primitive (Rrax) and
compute the virtual address of crypto_info as VAci. At
this point, the userspace application has not yet transferred
the keys and other sensitive information to the kernel. There-
fore, we have to wait for the userspace application to transfer
the session keys and other information to the kernel using
a second setsockopt. When the userspace invokes this
system call with the values (Step 2 in Fig. 8) the kernel
copies the information with the session keys to VAci (Line
6). After this, we can leak the crypto_info using Rmem.
To trigger Rmem, we observe that after storing the values

into crypto_info the system call handling in the kernel
calls another function (Line 7) which is on a different page.
So, we use the page-fault technique to inject Rmem on Line
11 and read out the crypto_info struct. To verify that
this information is sufficient to compromise the TLS session,
we record all packets for the session and check that we can
decrypt them correctly using the leaked information.

6.2. Disabling Firewall

The iptables utility allows system administrators to
setup packet filter rules for incoming and outgoing traf-
fic to create firewalls using the Linux kernel. While the
iptables rules are configured in the userspace, the actual
packet filtering is performed in the kernel. The kernel in-
vokes the nf_hook_slow shown in Lst. 3 for the filtering.

1 endbr64

2 movzwl eax, [rdx]

3 cmp ecx, eax ; ... do packet filtering

Listing 3. Exiting implementation of nf_hook_slow

We aim to prevent the kernel from filtering the packets and
compromise its firewall protections. To perform this attack,
we can use WESEE’s code injection from § 4.5 and replace
the code of the nf_hook_slow function. Specifically, we
inject shell code showin in Lst. 4 at the virtual address of
the nf_hook_slow function.

1 endbr64

2 mov $1, rax

3 ret

Listing 4. Code to inject in place of nf_hook_slow

Our code simply ensures the function returns success (1)
without performing any filtering. We have to always inject
8 bytes at a time because we use the Wmem primitive.
Therefore, while it would have been sufficient to inject Lines
2 and 3 to achieve our objective, we inject Line 1 to satisfy
the alignment of 8 bytes. We inject all 3 lines of shell code
as 16 bytes using 2 Wmem. To verify that our code injection
works as expected and prevents the kernel from performing
the packet filtering, we setup a victim VM with iptable
rules that drop all incoming and outgoing packets in the
VM. This implies that the firewall blocks all network traffic
to the VM. Then, we launch our attack, inject the shell
code, and send ICMP packets to the VM from the hypervisor
and observe that we receive responses from the SEV VM.
This shows that our code injection was successful, and any
firewall protection setup using iptable rules are bypassed
in the VM.

6.3. Gaining a Root Shell in the SEV-SNP VM

The kernel exposes an API called
call_usermodehelper to kernel modules. This
API allows kernel modules to start a user space application
from the kernel context. This API takes as arguments an
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executable to run in the user space along with arguments
and environment variables for the executable. When invoked
by a kernel module, it starts a process with the executable
in user space with root privileges. For example, executing
the command below from call_usermodehelper
spawns a root shell in user space on the VM. This shell
takes as input all network data from port 8001. Therefore,
if executed, this command allows all unauthorized remote
adversaries root access to the VM.

/bin/bash -c rm /tmp/t; mknod /tmp/t p;

/bin/sh 0</tmp/t \| nc -ln 8001 1>/tmp/t

To attack a victim VM, we aim to maliciously trick it into
executing call_usermodehelper with this command
as the argument. To do this, we generate shell code that ex-
ecutes this command using the call_usermodehelper
API. We choose to inject this shell code in the Linux
kernel’s function that receives and handles ICMP packets
(icmp_rcv). To inject the shell code we compute the
virtual address of the icmp_rcv function and use the
WESEE code-injection from § 4.5 which overwrites the
function’s code. Now, we send an ICMP packet to trigger
our shell code in the SEV VM. When the shell code calls the
call_usermodehelper API, it creates a new userspace
process with root privileges that provides a root shell that
listens on port 8001. Then, to interact with the spawned
shell we connect to the VM from the hypervisor using
netcat. There is no authentication or firewall, so our attack
connection succeeds and we get a root shell using WESEE.

At this point, we can not only leak all private keys on
the file system (e.g., SSH private keys) but also install keys
of our choice, manipulate userspace programs, and corrupt
stored data [22], [23], [24], [25]. While WESEE does not
attack user space by choice (§ 3.2), it achieves the same
goals by compromising the kernel space.

7. Implementation & Evaluation

Experimental Setup. We perform our experiments on
an AMD EPYC 9124 16-core 3.7 GHz processor with
192GiB RAM with SEV-SNP Gen 4 with microcode ver-
sion 0x0a10113e. We boot Linux kernel v6.5.0 [26] with
Ubuntu 20.04.6 LTS as guest using QEMU v8.0.0. On the
host we use the same kernel with Ubuntu 23.10 as disk-
image. For the rest of this section, we report measurements
averaged over 3 experiments.
Injecting #VC. To inject the #VC with exit_reason for
WESEE we modified the KVM subsytem of the host kernel
with 17 LoC. We inject multiple #VC with exit_reason
set to vmmcall and measure the time. One round-trip from
the hypervisor takes 3.19 µseconds on average.
WESEE primitives. We first build our page tracing mecha-
nism by exposing an API in the host kernel to interact with
its stage-2 page table management system with 338 LoC,
similar to SEV-STEP [23]. Our changes allow us to mark
pages as not executable and disable huge pages in the stage-
2 page tables. Then, we implement a function in the host

TABLE 2. CASE STUDIES.

Case study no. of Rmem no. of Wmem no. of #VC no. of page faults

kTLS 8 0 288 2115
firewalls 4 5 238 1474
root shell 4 52 2891 7796

Linux kernel that uses the page-fault trace to detect specific
page-fault patterns and exits from the VM and determines
when to use WESEE primitives. WESEE needs to inject 1,
34, and 34 #VCs for S, Rmem, and Wmem primitives re-
spectively. Further, WESEE can perform on average 216450
instruction skips/s, 9.25 memory reads/s, and 8.95 memory
writes/s.
ASLR. To break physical KASLR we profile the boot stage
and record on average 568960 page faults for the early
boot image with the last page address as 0x7a753000.
To compromise vKASLR we use one #VC for one Rrax.
kTLS. To leak session keys from kernel TLS we use the
WESEE primitives to implement a host kernel module (+220
LoC) and modify the host kernel (+428 LoC). We compile
NGINX v1.25.3 with kTLS support in OpenSSL v3.2.0 and
host a website in the SEV VM. We then access the website
from a remote machine on the same network. Client and
server use a standard TLSv1.3 connection with a standard
and secure cipher suite TLS AES 256 GCM SHA384 for
communication. We capture the packets for this connection
using Wireshark. We write a utility to manually decrypt
the captured packets in nodejs using crypto_info that
we leak from the SEV VM as explained in § 6.1. From
our experiments, we see that WESEE needs 5.97 seconds
to recover the full crypto_info from when the client
offloads the connection to kTLS to when we leak the session
key. Further, WESEE uses 1 Rrax and 8 Rmem to leak
crypto_info.
Firewall. We manually craft 16 bytes of shell code that
we inject to the VM. Recall that the page we target with
our code injection is in the .text section and does not
have write permissions set in the page table. To edit the
page permissions, we perform 3-level page walks and use
Wmem to change the permissions which takes on average
2.2 seconds. For both our case studies which perform code-
injection, our target address is always in a 2MiB page.
Therefore, we only do a 3-level page walk to the page
middle directory (pmd) even though the kernel uses 4-level
paging. Then, we inject our shell code to the target page
which takes 0.36 seconds on average. We setup the VM
with firewall rules that block all network traffic. Finally, to
test our shell code we use the ping utility in the host to
send ICMP packets to the VM and observe that we receive
responses indicating that our attack was successful.
Root shell. To get a root shell on the SEV VM, we use
GCC and objdump to generate 392 bytes of shell code. After
identifying the virtual address of the icmp_rcv function,
we perform a 3-level page walk that takes 3.1 seconds
on average. Injecting this shell code takes 8.1 seconds on
average. This shell code is significantly larger than what we
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needed to disable the firewall and therefore takes longer to
inject. To trigger our shell code, the execution should jump
to the icmp_rcv function. To do this, we use the ping
utility to send an ICMP packet to the VM. Then we use a
netcat client to connect to and use the root shell.
Accuracy. To determine when to inject #VC, we find func-
tions that are on different pages (see § 3.2). This technique
ensures that our injections always work and the #VC handler
is executed as expected. However, this function alignment
can change with different kernel versions. For the other ver-
sions, an attacker would either need to find different target
functions or use single-stepping to target the #VC [15], [23].
In this case, the accuracy of the attack depends on the newly
identified functions or the single-stepping framework.

8. Impact Beyond Linux

Besides Linux, we analyze four open source #VC im-
plementations in different projects (Enarx [27], Oak [28],
Coconut SVSM [29], and Mushroom [30]) and two closed
source OSes with AMD SEV-SNP support from Microsoft.

8.1. Open Source Implementations

All four open source projects implement at most 3 out
of the total 19 exit_reasons listed in Tab. 1. Thus their
attack surface is smaller than the Linux #VC handler.
Coconut SVSM is the official implementation recom-
mended by AMD that is supposed to be executed in VMPL0.
As of 4th April 2024, it only supports 3 exit_reasons:
TRAP, CPUID, and IOIO. While these implementations
have side effects on the execution state, Coconut SVSM
decodes the instruction that causes the #VC and faults if
it is not a valid instruction that can potentially raise a
#VC (e.g., cpuid). Thus, the attacker can only inject a
#VC when the victim is executing an instruction to ensure
that the instruction decoding succeeds. Since the instruction
decoding and the error_code are not linked, one can
launch WESEE attacks. In our experiments, we could inject
a CPUID exception in a location where the processor would
normally raise an IOIO exception. This way we were able
to corrupt the register state of the application.
Enarx only implements the CPUID exception. The handler
decodes the #VC generating instruction and compares it to
the cpuid opcode. If these do not match, it terminates the
VM. Thus, we conclude that the Enarx is not vulnerable.
Oak only handles CPUID exception, similar to Enarx. How-
ever, Oak does not decode the #VC generating instruction
and will always execute the handler and increment rip by
2. The attacker can use this to selectively skip instructions or
jump in the middle of an instruction. Since Oak is not offi-
cially supported on QEMU and is mainly used with Google’s
internal hypervisor we were not able to test our exploit.
However, we privately reported this to Oak maintainers on
15th March 2024, they acknowledged our attack and patched
the handler [31].
Mushroom implements a custom VMPL0 and VMPL3
kernel. It supports restricted injection and fetches the

error_code for the #VC directly from the guests
VMPL3 VMCB. Since the hypervisor cannot control the
error_code, Mushroom is not vulnerable to WESEE as
long as the VMPL3 kernel uses alternate injection mode
(explained in § 9.2).

8.2. Closed Source Implementations

We boot two Windows VMs using images with SNP
support: (a) Windows Server 2022 Datacenter evaluation
ISO on VirtualBox in a local setup; and (b) Windows
Server 2019 Datacenter VM on Azure machine with SNP
support. We extract the kernel and system files on both these
setups. The kernel includes symbols, but no reference to
SNP-specific terms such as “sev”, “ghcb”, “snp”. Perhaps
the SNP functionality is in a loadable module. However,
C:/Windows contains thousands of files. Our file search for
SEV terms returns zero hits. Instead of static code search, an
alternative is to dynamically observe the execution from the
hypervisor. KVM lacks support to boot Windows in SNP
mode. HyperV supports SNP but is closed-source, so we
cannot easily change it to inject #VC. In summary, analyzing
Windows internals proves exceptionally challenging and we
were unable to check whether Windows implements the #VC
handler or supports restricted and alternate injection modes.

9. Potential Mitigations

We propose defenses to detect WESEE and stop the
hypervisor from injection external #VCs.

9.1. Software-based Defenses

The defense can augment the VC handler. First, it checks
the instruction that caused the #VC. Then, it can determine
if the #VC was raised due to a valid instruction that can
be intercepted, before processing it. For example, consider
that the hypervisor triggers a #VC with exit_reason
as vmmcall on a cmp instruction for the application in
Lst. 1. The above defense will prevent the #VC handler from
executing the vmmcall handling logic and corrupting rax.
Instead, the handler will decode the instruction as cmp, see
that it is not a legitimate instruction that should be inter-
cepted, and discard the #VC. Further, the handler must use
the instruction it decodes rather than the exit_reason
register that can be controlled by the hypervisor.

The decoding approach is sufficient for most inter-
cepted instructions because they have distinct opcodes (e.g.,
vmmcall, rdtsc). However, some instruction intercepts
(e.g., MMIO, reads and writes to debug control registers) are
triggered on a mov instruction. For these cases, instruction
decoding and checking against the valid list of instructions
is insufficient. The VC handler must also check that the
mov instruction has the correct operands (e.g., memory-
mapped regions, debug register dr7), thus complicating the
logic. For example, the VC handler has to perform page-
walks to see if the address accessed by the mov instruction
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was in the memory-mapped region. To complicate matters
further, instruction intercepts for alignment checks could
be triggered by any instruction (e.g., accesses to unaligned
memory). So the VC handler will have to check, for every
instruction, if it accessed unaligned memory.

When the exception handler performs the above checks,
it has to mask all interrupts, which incurs overheads. More
importantly, ensuring that the checks are complete is chal-
lenging and error-prone. In fact, as explained in § 4.3, the
VC handler already checks and decodes the instruction for
MMIO handling. However, in light of WESEE, the current
decoding logic is (a) incorrect: it treats simple register
accesses as accesses to memory; (b) incomplete: it does
not check that the address accessed by the mov is actually
memory-mapped, just that the access was to an unencrypted
region. Therefore, this logic is insufficient or incorrect to
securely determine if the #VC was caused by an MMIO
operation. In summary, a purely software-based defense
does not guarantee security and can be potentially bypassed.
Linux Patch for WESEE. AMD implemented this software
patch as a quick fix to prevent arbitrary code execution [32].
We worked with the AMD team and improved the initial
version of the patch to also cover the early boot image.
Even with this patch, an attacker can still leak 8 bytes of
the VM. The guest copies the register content to the GHCB
and validates the legitimacy of the VC next. The hypervisor
can infer the copied 8 bytes even if the guest terminates
itself due to an illegitimate #VC. This serves as a case in
point for the incompleteness of software defenses.

9.2. Hardware-based Defenses

There are two main approaches to defend against WE-
SEE that both require hardware support to either protect the
malicious hypervisor from tampering exit_reason from
or injecting #VC.
Protecting exit_reason. One key requirement for WE-
SEE is the ability to set the exit_reason. An obvious so-
lution is to protect the exit_reason register, such that the
hypervisor can no longer write to it. Then, the current VC
handler can simply trust the values in the exit_reason
and handle them without worrying about the hypervisor
corrupting the value. This would eliminate the need for
complex decoding and checks proposed in § 9.1. However,
this might break functionality and needs microcode changes.
Blocking external #VC injection. There are three ways to
block the hypervisor from externally injecting #VC into a
victim VM’s CPU. First, since there is no valid use-case
where a hypervisor needs to inject a #VC, the hardware/mi-
crocode can directly block all external #VC injections into
SEV VMs. Second, AMD SEV supports restricted and
alternate injection mode. If the guest OS uses the Secure
VM Service Module (SVSM) feature, it can selectively
accept/drop external interrupts [1]. However, current open-
source projects do not fully implement support for these
modes. Third, AMD announced Secure Advanced Virtual
Interrupt Controller (sAVIC) on 14 Nov 2023, where the
SEV guest OS can mask interrupt vector to selectively

allow/drop external interrupts. Due to lack of documentation
and software, it is unclear if this will mitigate WESEE.
Immediate Hardware-defense Adoption. All SEV SNP-
capable processors support restricted and alternate injection
modes which can be used to prevent WESEE. Currently, the
software support to enable these modes are not available in
the Linux kernel. Efforts by AMD to upstream the secure
software support have been hindered with known gaps and
problems which are not straightforward to fix. For exam-
ple, interrupts can be injected irrespective of the guest’s
RFLAGS.IF register state [33]. With these problems, intro-
ducing new microcode to block external #VC injection as
a hot-fix is the most straightforward solution. However, for
this AMD has to deem WESEE as a hardware vulnerability.
To the best of our knowledge, AMD considers WESEE as a
software bug and is working on a combination of restricted
and alternate injection to fully mitigate WESEE.

10. Related Work

Attacks and vulnerabilities in SEV VMs. Google found
multiple vulnerabilities in SEV-SNP by analyzing the secu-
rity co-processor on AMD CPUs [34]. Prior works break
SEV by targeting the cryptographic algorithms [35], per-
forming page-remapping in the hypervisor [36], and using
side channels [37], [38], [39], [40], [41]. CacheWarp re-
verts modified cache lines to corrupt memory writes [24].
Crossline uses hypervisor controlled address space iden-
tifiers (ASIDs) to compromise SEV VMs before they
crash [42]. Code execution has been demonstrated by ex-
ploiting weak memory protection and performing Iago at-
tacks on hypervisor interfaces [20], [43]. WESEE uses
insights, such as page tracing and breaking physical ASLR,
from these prior works. All the above attacks target SEV or
SEV-ES; except for CipherLeaks [40] and CacheWarp [24]
which need fine-grained information about the VM to break
SEV-SNP. WESEE also breaks AMD SEV-SNP but only
needs page fault information.
Untrusted interfaces. Attacks on Intel SGX exploit system
call and other interfaces [16], [44], [45]. Several defenses
build secure interfaces to counter these attacks [46], [47],
[48], [49]. For malicious timer interrupts, AEX-Notify pro-
poses a framework for Intel SGX that thwarts attacks that
abuse asynchronous exits from the enclaves (e.g., timer
interrupts for single-stepping) [50]. TrustZone introduces
the concept of secure interrupts to prevent untrusted enti-
ties from sending malicious interrupts to protected appli-
cations [51]. In their SEV-ES analysis, Radev et al. and
Hetzelt et al. point that the hypervisor can perform Iago
attacks when #VC is used by the VMs to communicate with
the hypervisor (e.g., bad rdtsc) [43], [52]. Since they do
not consider malicious #VCs they conclude that the handler
does not leak any sensitive information. WESEE observes
that the hypervisor can trigger #VC at any point and uses
benign #VC handlers to compromise the VMs.
Attacker’s Capability to Profile Victim VM. SGX-step
uses several known attacks, including APIC timer-interrupts,
to build a single-stepping primitive for Intel SGX [53]. On
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SEV, the hypervisor can observe page-faults of the guest
OS [36]. Cachewarp builds a single-stepping framework for
SEV-ES using timer interrupts, information from encrypted
register states, and cache timing analysis [24]. SEV-STEP
demonstrates a single-stepping framework for SEV-SNP
VMs using page-faults, timer interrupts and eviction set-
based cache attacks [23]. WESEE only uses page-faults
observed by the hypervisor. However, if single-stepping
techniques are available WESEE can mount stronger attacks
(e.g., on user space instead of kernel space) [15].
Gap when supporting unmodified legacy applications.
Several prior works run unmodified applications on Intel
SGX and Arm TrustZone using abstraction layers (e.g.,
library OSes) [54], [55], [56], [57], [58], [59]. VM ab-
stractions (e.g., AMD SEV, Intel TDX, Arm CCA) reduce
invasive porting changes to legacy applications. Running
unmodified legacy VMs requires hardware and software
support in the kernel (e.g., hypervisor controlled mmio) [60].
Prior works do not analyze the effects of introducing new
interfaces (e.g., #VC) coupled with existing hypervisor capa-
bilities (e.g., ability to inject external interrupts). WESEE is
a concrete attack in this direction that requires close scrutiny.
Kernel Defenses & Hardening. Existing kernel defenses
against memory leakage and corruption [61], [62], and code-
reuse [63] (e.g., ebpf, system call filtering, seccomp, control-
flow-integrity) are orthogonal to WESEE. We demonstrate
WESEE on the recommended AMD SEV-SNP kernel, up-to-
date patches with all hardening enabled, standard compilers
and default configurations recommended by AMD. The only
defenses WESEE has to subvert were kernel ASLR and
write protection of executable pages. Stronger defenses,
if enabled, may make exploiting WESEE harder but may
not stop it completely. Instead, it calls for systematic and
rigorous kernel hardening for TEEs [64], [65].
Impact Beyond AMD SEV-SNP. Interrupt number 20 cor-
responds to the Virtualization Exception (#VE) on TDX.
The handler is similar to AMD’s #VC implementation. In
theory, #VE is also vulnerable to WESEE attack—Linux
handler does not decode to check if the VM indeed raised a
#VE. However, we were unable to exploit the interface for
two reasons. Intel TDX prohibits the injection of interrupt
number 20 into the guest. Thus we cannot trigger the
handler. Secondly, the hypercall used to obtain the register
state is served by the trusted TD-module and the untrusted
host has no direct way of controlling the arguments. On
ARM CCA we were not able to identify a handler with a
similar functionality. Thus we conclude that WESEE does
not apply to Intel TDX and ARM CCA.

11. Conclusion

WESEE leverages the untrusted hypervisor’s ability to
inject malicious #VC interrupts into AMD SEV-SNP VMs.
WESEE triggers the exception handler in the victim VM
with well-crafted and well-timed #VCs to induce register and
memory read/writes as well as arbitrary code injection into
the VM memory. Our three case-studies show that WESEE
compromises confidentiality and integrity of a victim VM.
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Appendix A.
Analysis of Nesting in Critical Section

x86 ISA supports instructions that operate on multiple
memory operands. The Linux kernel frequently uses one
instruction class that dereferences two memory addresses.
For instance, the movsb instruction is used for memory
copy operations in Lst. 5.

1 SYM_TYPED_FUNC_START(__memcpy)

2 mov rax, rdi

3 mov rcx, rdx

4 rep movsb

5 ret

6 SYM_FUNC_END(__memcpy)

Listing 5. x86 memcpy in the Linux kernel

movsb copies the content from the memory referenced
by rsi to the memory referenced by rdi. If either of
the registers point to a memory-mapped region, MMIO
access induced by this instruction triggers the VC handler.
However, when the CPU passes the exit_reason to the
VC exception handler, it does not indicate if the source,
destination, or both operands caused the exception. Thus, it
is up to the handler to detect the faulting memory access.
As a solution to this problem, the VC handler first reads
from the source and then writes the result to the destination.
It effectively splits one optimized movsb instruction into
two mov instructions. When the handler executes the mov
instructions, it expects to raise a nested #VC, due to either
one or both instructions. But it is sure that the instruction
causing the nested exception dereferences only one mem-
ory address. Since the read and write exceptions happen

sequentially, Linux must only support a nesting depth of
one #VC. However, the VC handler itself has a critical
section (seeLst. 6). In the critical section, the VC handler has
exclusive access to the GHCB page used for communication
with the hypervisor.

1 ghcb = __sev_get_ghcb(&state);

2 ...

3 result = vc_handle_exitcode(ghcb, error_code);

4 __sev_put_ghcb(&state);

Listing 6. VC handler entering and leaving the critical section

To support one level #VC nesting in the critical section
Linux introduces a second backup GHCB page. This is
needed in our example because the MMIO #VC originating
from a movsb instruction holds a lock to the first GHCB
page. Attempting to handle the read and write accesses
sequentially within the first #VC causes the nested #VCs
to acquire and release the lock of another GHCB page. As
of now the guest kernel only supports two GHCB pages.
This effectively limits the nesting capabilities of #VCs in the
critical section to one. If a second nested exception occurs
while the previous exceptions are in the critical section, the
guest will panic. While it is theoretically possible to support
the case of a second nested exception in the critical section,
there is no benign use-case as of now. However, nesting
limits outside of the critical section are only bounded by
the stack size available for the VC handler.
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