
Sigy: Breaking Intel SGX Enclaves with Malicious Exceptions &
Signals

Supraja Sridhara
ETH Zurich

Zürich, Switzerland
supraja.sridhara@inf.ethz.ch

Andrin Bertschi
ETH Zurich

Zürich, Switzerland
andrin.bertschi@inf.ethz.ch

Benedict Schlüter
ETH Zurich

Zürich, Switzerland
benedict.schlueter@inf.ethz.ch

Shweta Shinde
ETH Zurich

Zürich, Switzerland
shweta.shinde@inf.ethz.ch

Abstract
User programs recover from hardware exceptions and respond to
signals by executing custom handlers that they register specifically
for such events. We present Sigy attack, which abuses this program-
ming model on Intel SGX to break the confidentiality and integrity
guarantees of enclaves. Sigy uses the untrusted OS to deliver fake
hardware events and injects fake signals in an enclave at any point.
Such unintended execution of benign program-defined handlers
in an enclave corrupts its state and violates execution integrity. 7
runtimes and library OSes (OpenEnclave, Gramine, Scone, Asylo,
Teaclave, Occlum, EnclaveOS) are vulnerable to Sigy. 8 languages
supported in Intel SGX have programming constructs that are vul-
nerable to Sigy. We use Sigy to demonstrate 4 proof of concept
exploits on webservers (Nginx, Node.js) to leak secrets and data
analytics workloads in different languages (C and Java) to break
execution integrity.

CCS Concepts
• Security and privacy→ Systems security.

Keywords
TEE; Intel SGX; Exception, Signal, and Interrupt handling

ACM Reference Format:
Supraja Sridhara, Andrin Bertschi, Benedict Schlüter, and Shweta Shinde.
2025. Sigy: Breaking Intel SGX EnclaveswithMalicious Exceptions & Signals.
In ACM Asia Conference on Computer and Communications Security (ASIA
CCS ’25), August 25–29, 2025, Hanoi, Vietnam. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3708821.3710838

1 Introduction
User programs rely on exceptions and signals tomanage unexpected
events or errors that may occur during execution. Programming
languages allow developers to express event and error-specific logic
in the form of handlers, such that when the program is notified
of a particular event, the handler is executed automatically. These

This work is licensed under a Creative Commons Attribution 4.0 International License.
ASIA CCS ’25, Hanoi, Vietnam
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1410-8/25/08
https://doi.org/10.1145/3708821.3710838

rich abstractions are facilitated by the cooperation of the hardware
and the operating system (OS). When the hardware encounters
runtime errors during the program execution (e.g., page faults,
segmentation faults, timers, divide by zero), it notifies the OS via
interrupts. The OS either handles the faults itself (e.g., load the page
into memory) or forwards it to the user program’s signal handler
(e.g., DivideByZeroException). The program can also request the
OS for notifications about events of its interest that either emanate
from the system (e.g., Ctrl+C) or other processes on the system (e.g.,
synchronization between parent and child processes) and register
handlers that should execute on such events [24]. Thus, the OS
not only monitors for such events on behalf of the application and
notifies it, but also diverts the control of the application to the
event handlers in the program. Both these mechanisms facilitate
rich functionality in the programs, while the hardware and the OS
provide efficient notification and handler invocation.

Intel SGX provides a user-level abstraction called enclaves that
protects sensitive data and code execution [38, 45]. The hardware
protects enclave confidentiality and integrity even when the OS
and other user processes are compromised. With such a strong
threat model, Intel SGX limits the attack surface to the critical code
running in an enclave. Since the enclave memory is rendered inac-
cessible to the OS, traditional programs that were written with the
assumption of a trusted OS simply cannot execute inside enclaves
(e.g., syscall instruction is illegal inside an enclave).

Due to its unique programming model, existing programs do not
execute out of the box on Intel SGX [8, 13–18, 22, 23, 25, 28, 32, 41,
58]. As a solution, programmers can use SGX runtimes that provide
a small trusted runtime that interfaces with the SGX hardware to
expose a new high-level interface to the programmer. Alternatively,
programmers can use a trusted library OS inside an enclave that
can execute unmodified applications that were not programmed
for enclaves. Runtimes and library OSes for Intel SGX support ex-
ception and signal delivery to enclaves since it is a much-required
feature for programs. The hardware or the OS can inform the en-
clave about an exception or a signal by inducing an asynchronous
exit. The enclave safely stores its current execution state and exits
to untrusted code. The enclave can then be re-entered from another
fixed entry point to execute corresponding pre-registered handlers
for the exceptions or signals. During this flow, the hardware and the
trusted software ensure that the OS cannot subvert the execution

https://orcid.org/0009-0008-2263-6559
https://orcid.org/0009-0001-0880-7744
https://orcid.org/0009-0007-5151-7789
https://orcid.org/0000-0003-0415-2960
https://doi.org/10.1145/3708821.3710838
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3708821.3710838

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Supraja Sridhara, Andrin Bertschi, Benedict Schlüter, and Shweta Shinde

of the enclave—it executes the handler and then resumes the execu-
tion at the point where it was interrupted. This mechanism allows
enclaves to handle runtime events even when the OS is untrusted.

Heckler and WeSee introduce a new class of attacks called Ahoi
attacks where an attacker uses notifications to compromise Confi-
dential VMs (CVMs) enabled by Intel TDX and AMD SEV-SNP [56,
57]. Ahoi attacks use interrupts under the control of a malicious
hypervisor that can trigger interrupt handlers in the CVMs. These
interrupt handlers alter the global execution state of the CVMs
and compromise them. In light of these findings, we revisit Intel
SGX and analyze if an attacker can use notifications to compromise
the security of enclaves. We investigate two lines of inquiry: (i)
what events can the OS fake to trigger handler execution inside
the enclave? and (ii) can such handler execution bring about direct
changes to the enclave’s global execution state (e.g., variables)?

In this paper, we introduce a new attack called Sigy where the
OS compromises the enclave execution by inducing fake events and
signals to execute benign handlers registered by the enclave. Intu-
itively, enclaves want to recover from a divide-by-zero and expect
signals from another enclave. To handle such events, enclaves will
register handlers that explicitly update the enclave state, say by
changing the denominator to a non-zero value or invoking an event
handler to respond to another enclave’s request. If the OS convinc-
ingly tricks the enclave into falsely believing that such an event
occurred, the enclave will stop its current execution and execute the
handler that will explicitly update the enclave state (e.g., change a
variable to a non-zero value or execute a function). In the least, this
will result in corruption of the enclave’s state resulting in a crash.
If the OS injects the event at an opportune moment, it can use the
effects of the handler to compromise the enclave. We demonstrate
this phenomenon by introducing a new attack called Sigy, which
exploits the OS’s ability to fake signals to execute enclave handlers
and subvert SGX guarantees.

We show that existing runtimes, library OSes, and programming
language constructs are vulnerable to Sigy. We first analyze ex-
isting support to execute SGX applications: 8 runtimes (Intel SGX
SDK, Open Enclave, Teaclave SGX-SDK, Asylo, Rust EDP, GoTEE,
Enarx, and EGo) and 6 library OSes (Gramine, Scone, EnclaveOS,
EdgelessRT, MystikOS, and Occlum). Then, we analyze the signal
delivery mechanism and handlers for programs written in 9 lan-
guages (C, C++, Java, Python, Go, JavaScript, Rust, Julia and Wasm)
to observe their behavior in enclaves. We find that 3/8 runtimes
(Open Enclave, Teaclave SGX-SDK, and Asylo) and 4/6 library OSes
(Gramine, Scone, EnclaveOS, and Occlum) are susceptible to Sigy
because they do not detect the fake signals injected by the OS. Of the
9 languages we study, 8 (C, C++, Java, Python, Go, JavaScript, Rust,
and Julia) offer language constructs for programs to register custom
handlers. We hand-code applications in each of these languages
to register handlers and execute them in vulnerable SGX runtimes
and library OSes to confirm that they are indeed vulnerable to
Sigy. Next, we demonstrate that Sigy breaks the confidentiality and
integrity of 4 open-source applications (Nginx, Node.js, machine
learning) that have been ported to Intel SGX by prior works. Our
proof of concept exploits on these enclaves leak secrets and change
outputs. Depending on the victim enclave, Sigy may need to inject
signals in a particular window of execution. We construct a proof

of concept exploit against a worst-case application, a multi-layer
perceptron, that requires 186 billion injections to bias the output.

Our proposed software defenses serve as point-wise solutions
against Sigy. The vulnerable runtimes and library OSes have to
make a design choice between either disabling functionality for
security or leaving the onus on the developer to reason about the
security. While the latter can be a pragmatic solution, new attacks
like Sigy serve as an example that programmers using runtimes
and library OSes for lift-and-shift should not be burdened with this
decision. We conclude that some programs simply cannot be pro-
tected without limiting functionality. Our conclusion encourages
runtime and library OS maintainers to disable vulnerable exception
and signal delivery interfaces. Our detailed analysis of existing
enclave ecosystems spanning runtimes, library OSes, programming
language support, and existing enclave applications provides an in-
depth exploration to help future lift-and-shift solutions in making
judicious choices. In summary, Sigy draws attention to a new attack
surface that requires a re-examination of the enclave ecosystem.
Contributions. The paper makes three main contributions:

(1) Sigy Attack. We present a novel attack on Intel SGX where
a malicious OS can send fake signals enclave and trick them
into executing enclave-registered handlers that change the
enclave state.

(2) Analysis. Of the 14 frameworks for running applications in
Intel SGX, 7 are vulnerable to Sigy because they forward
fake signals to the enclave whereas 8/9 popular languages
used for enclave programming support custom handlers.

(3) Exploits.We build exploits on 4 open-source enclave applica-
tions to demonstrate Sigy.

Responsible Disclosure. We informed all the 7 impacted run-
times and library OSes from September 2023 to January 2024. All
the vendors of the runtimes and library OSes acknowledged that
this is an issue. Sigy is tracked under 3 CVEs: CVE-2024-25371
for Gramine, CVE-2024-29971 for Scone, CVE-2024-29970 for En-
claveOS. Gramine has mitigated this issue with a patch [7] and
other vendors are taking steps to fix it.
Sigy’s tooling and PoC exploits are open-source at
https://ahoi-attacks.github.io/sigy.

2 Sigy Overview
For functionality, applications register custom exception and signal
handlers that alter the global state of the program. To preserve
this functionality on Intel SGX, runtimes and library OSes provide
mechanisms to send signals to applications that execute in enclaves.
Sigy tricks the benign runtime and library OS signal handling
mechanisms which results in the enclave executing the handlers.
Therefore, the custom handlers in applications put together with
the signal propagation infrastructure of runtimes and library OSes
render the enclaves vulnerable to Sigy. Like previous works, we
deem this new attack vector, which was previously unknown, as a
vulnerability and not a bug in the enclave implementation [33].
Threat Model. We trust the hardware in the Intel CPU package
and assume that it is free from bugs. The enclaves are launched
and attested according to the Intel SGX specification, and all soft-
ware that executes inside the enclave is assumed to be bug-free.
This includes the enclave application code, trusted runtime, and

https://ahoi-attacks.github.io/sigy

Sigy: Breaking Intel SGX Enclaves with Malicious Exceptions & Signals ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

int old_mean;
int mean, n;
void add(int data){
try{
n += 1;
old_mean = mean;
//this can cause overflow
mean = addExact(old_mean*(n-1),data)/n;

}catch(ArithmeticException e){
mean = old_mean;

}
}

add(10)
add(20)
add(30)

old_mean=0
mean=0
n=0

before
execution

execute

after

old_mean=15
mean=20
n=3

normal execution

attack execution

old_mean=0
mean=0
n=0

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

Figure 1: Sigy on Java applications. Attacker injects sigfpe 3
times to change the execution and data integrity.

library OSes. We assume that all software that executes outside the
enclave, including the OS, untrusted runtime, and other processes
are untrusted and can be malicious. All the SDKs. library OSes and
runtimes we investigate except Occlum assume this threat model.
For Occlum, we assume Occlum’s threat model of distrusting pro-
cesses within a single enclave [59]. In Sigy, the attacker does not
have the ability to change the enclave’s code (e.g., to introduce
signal handlers). Instead, the attacker reuses existing handlers in
the enclaves to compromise them.

2.1 Motivating Examples
Faking hardware exceptions. Consider a Java function in Fig. 1
that executes in an enclave whose add function (Line 3) is called 3
times with data as 10, 20, 30. The function computes and stores the
newmean on every invocation. Now, consider amalicious operating
system (OS) that wants to compromise the data integrity of this
enclave. In this example, the attacker’s goal is to ensure that the
application never updates the mean, i.e., it remains 0 despite the 3
invocations of add. Because this code executes in an enclave, the
OS cannot change the values in memory directly. However, observe
that this enclave catches and handles ArithmeticExceptions to
deal with bad data. The handler reverts the value of mean, discarding
the effects of the bad data. If the OS can trigger this handler every
time the add function is invoked, then the meanwill not be updated.

The OS can use Sigy to achieve its goal. Specifically, the Java
runtime converts the signal for floating point exceptions (sigfpe)
that it gets from the OS to an ArithmeticException. This excep-
tion is then caught and handled by the enclave. Therefore, using
Sigy the OS injects sigfpe to the Java code in the enclave when it
executes Lines 4-9 in Fig. 1. This will result in the enclave always
executing the exception handler. With 3 such signal injections, the
OS ensures that the mean does not change, thus breaking integrity.
Faking user-defined signals. Several library OSes (e.g., Gramine,
Scone) allow lifting and shifting unmodified applications like Nginx
to execute in enclaves. Nginx is a web server that is highly opti-
mized to provide maximum uptime, configured using a config file.
Consider an unmodified Nginx server that executes in an enclave
to serve http data with config in Lst 1. At a later point, an Nginx
administrator introduces authentication tokens (JSON Web Tokens
(jwt) [19]) in the config file (Lst.2). To enable the administrator
to refresh the config file without downtime, Nginx performs the
configuration refresh on receiving sighup. When the administrator

sends sighup to the Nginx process, the Nginx process reads the
new config file and starts using it.

1 ...
2 server {
3 listen 80;
4 location /products/ {
5 ...
6
7 }

Listing 1: Old config

1 ...
2 server {
3 listen 80;
4 location /products /{
5 auth_jwt "API";
6 auth_jwt_type
7 encrypted }

Listing 2: New config

Now, consider a malicious OS that aims to disable this authenti-
cation mechanism in the Nginx server. To do this, the OS should
be able to force the server to use the old configuration file without
the authentication enabled. Library OSes protect enclave files by
encrypting them. Therefore, the malicious OS cannot directly edit
the config file. However, the OS can capture the old config file
as an encrypted blob from the file-system before it is replaced by
the administrator. Then, once the Nginx configuration upgrade
is complete, and checked by the administrator, the OS writes the
encrypted blob back to replace the new config file. Note that, this
is not sufficient to trick the Nginx server into using the compro-
mised configuration without restarting the enclave. The OS’s goal
is to ensure that when users connect to the Nginx server, they are
served using the older configuration instead of the configuration
that the administrator upgraded and checked, thus mounting a
time-of-check time-of-use (TOCTOU) attack. For this, the OS uses
Sigy to force the Nginx server to use this compromised configura-
tion after the administrator checks that the configuration reload
was successful by injecting sighup to the Nginx process.

2.2 Sigy Attacks on Real-world Enclaves
Sigy uses asynchronous signal injection to compromise enclaves
by triggering expressive signal handlers. This requires a runtime or
library OS that propagates hardware exceptions and signals to the
enclave application. Further, Sigy uses handlers in the applications
that perform computations that alter the enclave’s global state. The
enclave handlers depend on programming language constructs used
in the application (e.g., signal registration constructs, and signal
handling constructs). Therefore, we first evaluate 14 runtimes and
library OSes and check if they propagate signals to the enclaves
(Sec.3 and Sec. 4) by building proof-of-concept exploits for each of
them. Next, we examine 9 programming languages and systemati-
cally analyze the constructs they provide for programs to register
and execute custom signal handlers (Sec.5.2). Finally, we use the
insights from our runtime and programming language analysis
to demonstrate Sigy on 4 publicly available enclave applications
(Sec.6). We extract secrets and change program execution to break
confidentiality and integrity.

3 Faking Signals in SDKs
Background: Sending signals to threads. SDKs are typically used
to execute a single process in an enclave. So, they may not enable
mechanisms for the enclave to send signals to other processes.
However, they do support multi-threading inside the same enclave.
For sending signals between threads, the OS exposes the tkill
system call. Along similar lines, some SDKs add mechanisms to
enable enclave threads to send signals to each other. To support

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Supraja Sridhara, Andrin Bertschi, Benedict Schlüter, and Shweta Shinde

Table 1: Library OS and Runtime analysis for Sigy. ✓: in-
terface supported ✗: interface not supported ❈: cannot be
analyzed as they are closed source. The last two columns in-
dicate whether Sigy can compromise the enclave by injecting
signals.

Name Interfaces Can compromise with Sigy?

Type HW exception
interface

Other signal
interface

HW exception
signals

Process
signals

SDK

Intel SGX SDK [18] ✓ ✗ no no
Open Enclave [23] ✓ ✓ yes yes
Teaclave [28] ✓ ✓ yes yes
Asylo [8] ✓ ✓ yes yes
Rust EDP [25] ✗ ✗ no no

libos: 1-process
per enclave

Gramine [17] ✓ ✓ yes no
Scone [26] ❈ ❈ yes yes
EnclaveOS [16] ❈ ❈ yes yes
EdgelessRT [13] ✗ ✗ no no

libos: n-process
per enclave

Mystikos [22] ✗ ✓ no no
Occlum [58] ✓ ✓ yes yes

language
runtime

GoTEE [41] ✗ ✗ no no
Enarx [15] ✗ ✗ no no
EGo [14] ✗ ✗ no no

sending signals to other threads, the SDKs add a new ocall interface
to send a signal to the target enclave thread via the OS (Steps 1-4
in Fig. 2(b)). When the OS sends the signal to the target enclave
thread, the untrusted runtime’s handler propagates it to the trusted
runtime using an ecall (Step 5) which in turn invokes the target
thread’s signal handler in the enclave.

Tab.1 shows an overview of our library OS and runtime analysis,
and indicates whether Sigy can compromise an enclave that uses
the respective library OSes and runtimes by injecting signals.

3.1 Intel SGX SDK
The Intel SGX SDK allows enclaves to register handlers for hard-
ware exceptions (e.g., divide-by-zero) to perform custom handling
when hardware exceptions occur. During normal operation, if the
enclave executes an instruction that triggers a hardware excep-
tion (Fig.2(a)), the SGX hardware triggers an asynchronous exit.
On an asynchronous exit, the trusted hardware stores the current
execution state of the enclave into the protected state save area
(SSA).

1 struct _exit_info_t {
2 uint32_t vector; // exception vector number
3 uint32_t exit_type; // HW or SW exceptions
4 uint32_t valid; // supported/unsupported }

Listing 3: Exit information stored in the SSA.

Then, it raises an exception that the untrusted OS traps onwhere the
hardware stores information about the exit into the SSA as shown
inLst. 3. Crucially, in SGX 2, the hardware stores information about
the exit into the SSA as shown in Lst. 3 while SGX 1 does not store
this hardware information [39].

1 if (ssa_gpr ->exit_info.valid == 1) {
2 // info used to forward exception to enclave app
3 info ->exception_valid = ssa_gpr ->exit_info.valid
4 info ->exception_vector = ssa_gpr ->exit_info.vector;
5 info ->exception_type = ssa_gpr ->exit_info.exit_type; ... }

Listing 4: Exception handling for Intel SGX SDK.

This includes the validity, type, and reason (i.e., exception vec-
tor) for the asynchronous exit. Enclave software can access this
information while untrusted software (e.g., untrusted runtime, OS)

ocall_handler(…):
tkill(signal, t2)

sig_handler(…):
ecall_sig(…)

sig_handler(…):
ecall(…)

trt

𝑛
0

os

1

urt

h/w
exception

2
3 sigfpe

ecall(…):
…//handle divz

4

enclave p1

divz_handler():…

5

os
4 signal

enclave p1
t1

ocall_raise
(signal, t2)2

3

send_signal
(signal, t2)

1

sig_handler():
...

ecall_sig(…):

5ocall ecall

…//handle sig

6

(a)

t1 t2

(b)

Figure 2: SDK interfaces. (a) Handling hardware exceptions
(b) Handling intra-enclave signals.

cannot. The Intel SGX SDK’s trusted runtime uses the exit informa-
tion from the SSA to deduce the validity (see Line 1 in Lst.4) and
reason for any asynchronous exit (Line 4 − 5). When a hardware
exception causes an exit from the enclave (Step 1 in Fig. 2(a)), the
trusted hardware saves the exit information in the SSA and raises
a hardware exception to the OS (Step 2). The OS converts the hard-
ware exception to a signal.1 Then, it identifies the enclave process
that caused the exception and sends it a signal (Step 3). This signal
is caught and handled by Intel SGX SDK’s untrusted runtime. The
signal handler converts the signal to the corresponding hardware
exception and notifies the enclave with the exception information
by entering the enclave (Step 4).2
SGX 1. The trusted runtime uses the hardware exception vector
from the untrusted runtime to call the enclave application’s excep-
tion handler. Therefore, SGX 1 enclaves that do not have hardware
support to store the exit information are vulnerable to Sigy. Specifi-
cally, the OS can arbitrarily inject a signal to the enclave to cause an
asynchronous exit. Then, the untrusted runtime enters the enclave
with the hardware exception vector corresponding to the signal.
The exception handling in the trusted runtime executes the en-
clave’s exception handler (Step 5) without any filtering. Therefore,
an attacker can use Sigy to asynchronously send signals to the
enclave and trigger its exception handlers.
SGX 2. Enclaves that execute in SGX 2 with the Intel SGX SDK are
not vulnerable to Sigy. In SGX 2, the trusted runtime uses the exit
information from the SSA to determine the validity and exception
vector when performing exception handling. If the OS maliciously
injects signals to the enclave, it causes an invalid exit (i.e., the
hardware stores 0 in Line 4 in Lst. 3). When the trusted runtime
checks the exit information, the guard check on Line 1 of Lst. 4 will
fail. So the trusted runtime will discard the exception and will not
execute the handler in the enclave (see Fig. 3(a)).

3.2 Open Enclave
Open Enclave is a widely used open-source SDK that allows devel-
opers to write custom applications to execute in SGX enclaves.
Filtering using exit information. To support exception handling,
Open Enclave allows applications to register handlers for hardware
exceptions. An instruction that raises a hardware exception in the
1OS does not raise a signal for page faults. It simply resumes the untrusted runtime
2The trusted runtime implements 2-level exception handling for asynchronous exits.
We abstract this detail in our discussion.

Sigy: Breaking Intel SGX Enclaves with Malicious Exceptions & Signals ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

EApp

exit_info
check

os

urt

signal

eenter

os

urt

signal

eenter

signal

eenter
(sig)

(a) (b)

EApp

exit_info
check

register
sighandler

2

1

2

1

2

1

EApp

os

urt

signal

deliver_sig
_ecall(sig)

(c)

EApp

exit_info
check

os

urt

signal

eenter

register
sighandler

signal

sig_handler
_ecall(sig)

(d)

exit_info
check

signal

eenter
2

1
1

2
2

1

2

1

Figure 3: (a) Intel SGX SDK (b) Open enclave (c) Asylo
(d) Teaclave SGX-SDK.

enclave causes an asynchronous exit and traps into the OS. The
OS and the untrusted runtime then propagate this exception to the
enclave’s trusted runtime. Open Enclave’s exception handling uses
the exit information that the hardware stores in the SSA like in
Lst. 4. If the OS attacks an enclave by maliciously injecting a signal,
this will cause an asynchronous exit from the enclave. However,
the hardware will indicate that this is an invalid exit in the exit
information stored in the SSA. When the trusted runtime handles
this exception, it will detect the attack and not execute the exception
handler (LHS of Fig. 3(b)).
Supporting inter-thread signals. The hardware exception in-
terface allows applications to only register handlers for hardware
exception events. Open Enclave does not allow enclaves to register
handlers for other signals (e.g., sigusr1, sighup) which limits the
expressiveness of applications that can execute with Open Enclave.
To improve expressiveness, Open Enclave introduces a separate
mechanism to allow enclave threads to send signals to each other.
This allows enclave threads to explicitly enable signals from the
host and register signal handlers (Line 2 and Line 3 in Lst. 5). With
this, the threads can send signals (Line 4) to other enclave threads
that are routed through the trusted runtime.

1 ...
2 oe_add_vectored_exception_handler(false , sigusr_handle)
3 // enable signal
4 oe_sgx_td_register_host_signal(thread , SIGUSR1)
5 //do ocall
6 host_send_interrupt(target_thread , SIGUSR1) ...

Listing 5: Enable, register, and send a signal in Open Enclave.

When one enclave thread wants to send a signal (e.g., sigusr1)
to the target enclave thread, it invokes the trusted runtime which
performs an ocall (Step 2 in Fig. 2(b)). In the ocall context, the
untrusted runtime raises a signal to the target enclave thread using
the tkill system call. When the target enclave thread is resumed
through eenter (Step 5 in Fig. 2(b)), the trusted runtime calls the
target enclave thread’s signal handler (Step 6 in Fig. 2(b)).
Attacking Open Enclave. When threads send signals to each
other, the hardware exit information cannot be used to determine if
the signals are legitimate. Specifically, the exit information stored in
the SSA is only useful to determine the legitimacy of hardware ex-
ceptions and not explicit exits caused by sending signals. Therefore,
the enclave cannot validate if the signal was legitimately raised
by one of its threads or if it was maliciously injected by untrusted
software. We can use the signal injection interface to compromise
the security of Open Enclave using Sigy. Concretely, untrusted soft-
ware like the OS can directly send signals to enclave threads. This

EApp trt urt OS

register
(sigusr1,
handler)

ocall_sigaction
(sigusr1) sigaction

(sigusr1,
urt_handler)

T2

T1 raise(T2,
sigusr1)

ocall_raise
(T2,sigusr1) tkill

(T2,sigusr1)

sigusr1
ecall_sig_handle
(T2, sigusr1)

urt_handler

T2
handler(…)

can be
maliciously
invoked

OS

uPAL

tPAL

libOS

signal

signal:event
event

event:signal

event

eAPP

signal

sig_handler

hw exception

(a) (b)

Figure 4: (a) Signal support in Teaclave. 𝑇1 and 𝑇2 are threads
of the same enclave process. Black: Normal operation with
ocall and ecall interfaces in Teaclave. Pink: Interfaces that
can be maliciously invoked. (b) Hardware exception/signal
handling in Gramine.

causes the untrusted runtime to enter the enclave with the signal.
Because the trusted runtime does not validate the source of this
signal, it will invoke the enclaves signal handler (RHS of Fig. 3(b)).
Therefore, an attacker can arbitrarily execute the enclave’s signal
handler using Sigy.

3.3 Teaclave SGX-SDK
Teaclave SGX-SDK (Teaclave for short) enables developers to write
programs in Rust and execute them in enclaves. It is based on Intel
SGX SDK and implements different Rust libraries to ease enclave
application development (i.e., standard library functionality).
Hardware exceptions. For hardware exceptions, it relies on the In-
tel SGX SDK’s exception handling mechanism. The trusted runtime
of Intel SGX SDK detects and discards all maliciously injected ex-
ceptions by checking the exit information in the SSA as discussed
in Sec. 3.1. Hence, this interface cannot be used to compromise
Teaclave enclaves using Sigy.
Signal support. Next, we analyze Teaclave’s support that enables
enclave threads to send signals to each other. Teaclave includes
wrappers for Rust signal libraries. This allows enclave threads to
register handlers and send signals to each other. To enable this
functionality, Teaclave introduces a new ocall that its Rust library
wrapper invokes as shown in Fig. 4(a). The ocall function in Tea-
clave’s untrusted runtime performs sigaction and raise libc calls
Teaclave also adds a public ecall (t_signal_handler_ecall) to
be invoked by the untrusted runtime to forward signals from one
enclave thread to another.

During normal operation, an enclave thread can raise a signal to
another thread using Teaclave’s signal library. This is translated into
an ocall (u_raise_ocall) by the library which transfers control
to Teaclave’s untrusted runtime. The untrusted runtime sends a
signal to the target thread using tkill. When the OS sends the
signal to the target thread, Teaclave’s untrusted runtime invokes
the ecall (t_signal_handler_ecall) to handle the signal in the
enclave. The ecall implementation in Teaclave’s trusted runtime
then triggers the signal handler registered in the target thread.

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Supraja Sridhara, Andrin Bertschi, Benedict Schlüter, and Shweta Shinde

Attacking Teaclave. Sigy needs the ability to arbitrarily inject
signals that trigger the signal handler in the enclave. To gain this
capability, Sigy can abuse the t_signal_handler_ecall interface.
If an enclave registers signal handlers, Sigy can arbitrarily inject
signals into the untrusted runtime and trigger this ecall. Alterna-
tively, because the untrusted runtime is attacker-controlled, Sigy
could directly invoke this ecall without the need for signal injection.
In both cases, the enclave application will always execute the signal
handler (Fig.4(a)). Therefore, an attacker can use Sigy to trigger
computation in the enclave. Note that the trusted runtime does not
have anymechanism to distinguish legitimate signals (e.g., from one
enclave thread to another) from those that are maliciously injected
by the OS. Further, the t_signal_handler_ecall is a public root
ecall (i.e., invoked from any untrusted software) for functionality
such that it can be invoked by the untrusted runtime to forward
signals to the enclave. Therefore, Teaclave’s signal handling design
makes it vulnerable to Sigy (RHS in Fig. 3(d)).

3.4 Asylo
Asylo is an open-source framework that provides a POSIX interface
to enable enclave application development. It implements wrappers
for POSIX functions that invoke ocalls to interact with the untrusted
OS. Asylo uses the Intel SGX SDK and preserves the hardware
exception handling interface from the SGX SDK. This interface
checks the exit information in the SSA and discards maliciously
injected exceptions. So, this interface is not vulnerable to Sigy.
Signal support. Asylo introduces a new signal handling mecha-
nism to allow enclave applications to register and handle signals.
In Asylo, this signal handling interface can be used by the enclave
application to register all POSIX signals. To support signals, Asylo
introduces a new ocall (ocall_enc_untrusted_register_signal
_handler) to register a signal handler and an ecall (ecall_deliver
_signal) to propagate the signal from the OS to the enclave. When
the OS sends a signal, the untrusted runtime invokes the ecall
and transfers the execution to the enclave. The enclave’s trusted
runtime uses the signal from the ecall’s parameters, looks up the
corresponding handler that was registered, and invokes it.
Attacking Asylo. The ecall used to deliver the signal to the enclave
is a public root ecall. Therefore, Sigy can use this interface to attack
enclaves in Asylo. Concretely, when the OS sends a signal to the en-
clave, the untrusted runtime invokes the ecall to enter the enclave’s
trusted runtime (RHS Fig. 3(c)) The trusted runtime executes the
enclave’s signal handler without any additional checks.

In summary, our analysis shows that all SDKs use the exit in-
formation that the hardware stores to handle hardware exceptions.
However, they introduce new mechanisms to support signal han-
dling between threads in the enclaves which render 3 out of the 4
SDKs vulnerable to Sigy.

4 Faking signals in Library OSes
Background. Library OSes support rich exception handling and
signal interfaces for enclave applications. Unlike the SDKs, they
also implement mechanisms to execute multi-process applications
by adding support for calls like fork, vfork, and execv. In some
library OSes (e.g., Gramine, Scone) calls to these functions spawn
new enclave processes (Fig.5(b)). Like the OS, the library OSes also

urt & os

p1

urt & os

libos

(a) (b) (c)

signal signal

p1
libos libos

p2

libos

p1 p2
signal

urt & os

Figure 5: Signal propagation with library OSes. (a) OS or un-
trusted runtime sends signal to enclave process. (b) One en-
clave process sends signal to another enclave process through
the untrusted runtime and OS. (c) LibOS creates a process
abstraction such that 2 processes run in the same enclave.
These processes can send signals to each other via the LibOS.

add support to send signals from one enclave process to another.
For this, they route the signals through the untrusted operating
system and runtime (Fig.5(b)). Other library OSes support multi-
processing, by implementing process abstractions inside the enclave
(e.g., Occlum). Such library OSes route inter-process signals inside
the enclave itself and do not have to exit or use the untrusted
runtime and OS to propagate signals (Fig.5(c)).

4.1 Gramine
Gramine is an open-source library OS that enables executing un-
modified multi-process applications in SGX enclaves. It has 3 parts—
a library OS, a Platform Adaptation Layer (PAL), and a patched C
standard library. For simplicity, we refer to the part of the PAL that
runs outside the enclave as untrusted PAL (uPAL) and the part that
executes inside the enclave as (tPAL).
Gramine’s signal support. Crucially for Sigy, Gramine’s C stan-
dard library allows support for signal handling in enclave appli-
cations. Specifically, the wrappers for C’s sigaction calls allow
the application to register handlers for signals. When the enclave
triggers a hardware exception, the untrusted OS traps on it and
raises a signal that is caught by the uPAL. The uPAL’s signal han-
dling function (handle_sync_signal) converts the signal into a
corresponding Gramine-specific PAL event. For example, the uPAL
maps sigfpe to pal_event_arithmetic_error. Then, it invokes
tPAL using the sgx_raise (Fig.4(b)) who forwards the event to the
library OS. The library OS converts the event to a signal, creates
the signal struct (siginfo_t) like in Linux, and raises the signal to
the enclave application. This finally results in the enclave executing
its signal handler.
Attacking Gramine. The trusted PAL does not check if the event
was raised because of a real hardware exception in the enclave or
by a signal injected by the untrusted OS, thus making Gramine
vulnerable to Sigy. Specifically, the untrusted OS can inject a signal
arbitrarily to a Gramine application (see Fig. 5(a)). This signal is
converted to an event in the uPAL and forwarded to the tPAL which
eventually executes the enclave application’s handler.

Gramine supports executing multi-process applications. It allows
enclave processes to send software-generated signals to each other
using a message-passing framework in the trusted PAL. Using this
message-passing framework, the enclave’s inter-process signals are
not sent through the untrusted OS. Therefore, with Sigy we can
only inject signals that map to hardware exceptions to compromise
enclaves that execute with Gramine (Sec.5.1).

Sigy: Breaking Intel SGX Enclaves with Malicious Exceptions & Signals ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

4.2 Scone and EnclaveOS
They are closed-source library OSes that support executing unmod-
ified applications in SGX based on Intel SGX SDK. As we don’t have
the source code, we perform a black-box analysis of these library
OSes. Specifically, we write a program that registers handlers for
all signals (Sec.5.1) and observe which handlers are executed. For
both Scone [32] and EnclaveOS [16], our analysis shows that we
can arbitrarily inject most signals from the untrusted OS to the
enclaves (Sec.5.1). This successfully triggers signal handlers in the
enclave making them vulnerable to Sigy. Scone forwards all signals
from the OS to the enclaves. For EnclaveOS, our analysis shows
that sigusr2 is reserved for library OS-specific operations, and en-
clave applications cannot register signal handlers for these. Besides
this, we observe that all other signals from the OS execute enclave
handlers. Because these are closed-source we cannot comprehen-
sively analyze their behavior. We suspect that they allow all signals
because they introduce a new ecall which enables the OS to send
signals to the enclaves.

4.3 Occlum
Occlum is an open-source library OS that enables multi-process
applications by executing them in a single enclave [58]. As shown
in Fig. 5(c), Occlum operates under a threat model that is not typi-
cal of SGX enclaves. Specifically, it assumes untrusted co-resident
processes inside an enclave [59]. It performs inter-process isolation
using Intel MPX for software-fault isolation. Crucially, it allows
application processes in the enclave to send signals to each other.
In this threat model that assumes untrusted processes inside the
enclave, Sigy can inject signals from one process to another. For
Occlum, we do not need the untrusted OS to inject signals into
the enclave. Instead, we can use malicious attacker-controlled pro-
cesses to send signals to the victim process in the same enclave.
The library OS in Occlum does not filter such injections and simply
forwards the signals from the attacker-controlled process to the
victim process. For completeness, we checked if the OS can inject
signals into the enclave to trigger signal handlers. We report that
while we can inject signals, these signals do not result in the enclave
executing its signal handlers. Instead, the library OS invokes the
kernel’s default signal handling which always crashes the process.
We observe that, if Occlum did not assume untrusted co-resident
processes inside the enclave, it would not be vulnerable to Sigy as
it does not expose any signal interfaces to the untrusted OS.

4.4 Other Runtimes
Runtimes without signal support. Of the runtimes and library
OSes that we surveyed, the language runtimes GoTEE, EGo, and
Enarx are not vulnerable to Sigy because they do not support
signal handling [14, 15, 41]. Similarly, EdgelessRT (a library OS)
and RustEDP (an SDK) also do not support signal handling in en-
claves [13, 25]. Therefore, these also cannot be attacked using Sigy.
Runtimes with limited signal support. MystikOS is a library
OS that allows multiple application processes to execute in a sin-
gle enclave process [22]. Similar to Occlum, MystikOS implements
mechanisms to allow application processes inside the enclave to
send signals to each other. All signals are routed through the li-
brary OS and do not leave the enclave. Therefore, it doesn’t expose

interfaces for the untrusted software OS to inject signals. Unlike Oc-
clum, it assumes that processes in the enclave mutually trust each
other. So, while processes can send signals to each other, this cannot
be abused by an attacker to compromise the enclave’s execution.
Therefore, MystikOS is not vulnerable to Sigy.

5 Which signals can we inject?
In Sec. 3 and Sec. 4, we discussed SDKs and library OSes that are
vulnerable to Sigy. Next, we systematically analyze each of the vul-
nerable SDKs and library OSes to determine which signal handlers
are potentially of interest to the attacker. Then, we examine pro-
gramming language support for signals to determine if applications
written in them might be vulnerable to Sigy.

5.1 SDK and Library OS
To determine which signals are of interest to Sigy in vulnerable
SDKs and library OSes, we write test applications that register
handlers for all signals in the range 1-31. We execute our test appli-
cations in each of the 7 vulnerable SDKs and library OSes. Then,
for each run of the test application we inject a signal from the OS
and check if the application: (a) executes the registered handler, (b)
crashes, or (c) has no effect as shown in Appx. A.1.
Our findings. Our experiments show that when our test appli-
cations invoke the rt_sigaction system call and try to register
handlers for sigkill and sigstp, the system call fails and the appli-
cation always crashes for all SDKs and library OSes. This is because
these signals are reserved by the operating system for process man-
agement (e.g., sigkill is used to force kill the process). Occlum
and Scone allow handlers for all other signals except sigkill and
sigstp to be registered and we report that their signal handlers are
executed. EnclaveOS reserves sigusr2 for library OS operations
but forwards all other signals except sigkill and sigstp to the
application and executes its registered handlers. Notably, Teaclave
does not allow injecting the signals that it expects to get from hard-
ware exceptions (sigill, sigtrap, sigbus, sigfpe, and sigsegv)
through the signal interface used for inter-thread communication.
In contrast, Gramine only allows applications to use signals that
map to a limited set of hardware exceptions (e.g., sigill, sigbus,
sigfpe, and sigsegv). Open Enclave only allows a small subset of
signals (sigill, sigbus, sigfpe, and sigsegv) to be forwarded to
the enclave through its signal handling interface.

5.2 Programming Languages
The SDKs and library OSes that we analyzed allow developers to
execute programs written in different languages in the enclaves.
While some of them provide support for specific languages (e.g.,
Teaclave is used to develop and run Rust programs), others support
a wide range of languages (e.g., Scone supports executing programs
written in C, C++, Java, Python, Rust, Go, JavaScript).3 Therefore,
we analyzed 9 popular programming languages (see Appx. A.2)
to check if they allow applications to register and execute signal
handlers. To do this, we wrote programs in each of the languages
to register signal handlers for all signals from 1 to 31. We report
if the corresponding signal handlers were executed for each pro-
gramming language in Appx. A.2. The language and signal pairs
3We analyze server-side JS, specifically Node.js

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Supraja Sridhara, Andrin Bertschi, Benedict Schlüter, and Shweta Shinde

that execute the registered signal handlers are of specific interest
for Sigy. An attacker can use these signals to compromise appli-
cations written in the corresponding language. For completeness,
we also analyzed which signal handlers the programming language
standard libraries or interpreters register by default i.e., when the
program does not register any signal. We report our findings in
Appx. A.2. Our experiments show that signal number 10 (sigusr1)
and signal number 3 (sigquit) in Julia and Java respectively write
debug logs to stderr and stdout. In Sigy, stdout and stderr are
not accessible to the attacker and are therefore not interesting. Fur-
ther, Go starts profiling on signal 27 (sigprof), however this does
not lead to any changes in the program’s global state. Interestingly,
NodeJS starts a debug server on signal 10 (sigusr1). We exploit this
behavior to demonstrate Sigy on a NodeJS application in Sec. 6.2.
Finally, we find that all other signal handlers that programming
language runtimes register do not perform any computation that
changes the program’s global state and simply crash the application.
These handlers are therefore not interesting to Sigy.
Our findings.WebAssembly system interface (WASI), the standard
interface definition for WebAssembly, does not yet support sig-
nals [29]. So, programs compiled to Wasm binaries which use WASI
cannot register or execute signal handlers. For the other languages
we broadly classify the signal support into 2 categories: explicit
and implicit support (Appx.A.2). Programming languages that offer
explicit signal support allow applications to register signal handlers
for specific signals (e.g., using the signal(signum,handler) libc
function) which are executed when the OS sends a signal to the
enclave. Therefore, Sigy can asynchronously trigger these handlers
when enclave programs are written in these languages.

Languages which provide implicit support for signals (e.g., Java,
Julia) register signal handlers directly with the OS. They do not
provide any constructs for the programs to register signal-specific
handlers. Instead, the language runtime converts signals into soft-
ware exceptions. These software exceptions are caught and han-
dled by the applications. For example, Java converts sigfpe to
ArithmeticException and forwards it to the application. The ap-
plication can execute custom handling for the exception in its catch
block (e.g., Line 9 in Fig.1). Similarly, Julia converts sigfpe to
DivideError which the application can catch and handle. Sigy
can trigger these catch blocks to change the execution and data
integrity of applications written in these programming languages.

Go uses sigprof for internal CPU profiling and so allows pro-
grams to register handlers for all other signals except sigprof.
All other languages that provide explicit signal support, allow pro-
grams to register handlers for all signals between 1-31 except 9
and 19 (i.e, sigkill and sigstp). Note that, this is a direct con-
sequence of the kernel blocking all requests to register handlers
for sigkill and sigstp. On the other hand, Java only converts
sigfpe to ArithmeticException. Therefore, Sigy can only use
sigfpe to compromise programs written in Java.

In summary, of the 9 languages that we analyzed, we found that
1 does not support any signal handling, 2 only supports implicit
signal handling, and the 6 others support explicit signal handling.
So, programs written in any of the 8 languages that provide signal
support may be vulnerable to Sigy and should be reanalyzed.

6 Case studies
We confirmed our findings from Sec. 3-Sec.5 using hand-coded
enclaves. Then, we surveyed publicly available SGX enclave ap-
plications from Intel, and applications ported to library OSes and
runtimes to define our case studies (Appx.A.4). Here, we first dis-
cuss end-to-end case studies and explain how Sigy can be used to
compromise enclave execution. Then, we build a framework and
demonstrate the feasibility of Sigy’s signal injection architecture.

6.1 Nginx
We surveyed widely used open-source webservers optimized for
high uptime and found that many of them use signals to upgrade
configuration without have to restart the server. Specifically, httpd
and Nginx use sigusr1, and squid proxy server uses sighup to
upgrade the server’s configuration. We choose to demonstrate Sigy
on Nginx as it is ported by library OSes (Gramine and Scone) to
run in SGX enclaves.

By default, Nginx allows a system administrator to upgrade
its configuration and binaries using signals (sighup and sigusr1)
without degrading the uptime of the server. For Sigy, this gives
the attacker the ability to change the configuration and binary
of the server by injecting sighup and sigusr1. Gramine, Scone,
and EnclaveOS port Nginx to run in SGX enclaves. Our analysis
from Sec. 5.1 shows that Sigy cannot inject sigusr1 into enclaves
running with Gramine. Further, the port of Nginx by EnclaveOS
reduces the functionality of Nginx and does not allow administra-
tors to refresh configuration files without restarting the server. Like
EnclaveOS, Scone’s encrypted file-system also limits the administra-
tor’s capabilities to refresh configuration files without restarting the
server. To support this functionality Scone’s encrypted file-system
will need to be modified. So, we demonstrate Sigy using Scone with
the encrypted filed-system turned off.
Benign Nginx configuration and binary upgrade. Consider an
Nginx webserver executing inside an enclave (𝑡0 in Fig. 6). At time
𝑡1, the Nginx administrator replaces the configuration file with an
updated file and sends sighup to the Nginx process. On receiving
this, the Nginx process (at time 𝑡2) reads the new configuration
file and begins to use it. Similarly, the administrator upgrades the
binary of the server by writing a new file and sending sigusr1 at
time 𝑡3 which is read and used by the server at 𝑡4. Note that, in an
enclave setting, the administrator encrypts the configuration and
binary files before writing them to the OS accessible file-system.
These files are only decrypted inside the enclave.
Attacking Nginx with Sigy. Because the administrator encrypts
the configuration and binary files before writing them into the
file-system, the OS cannot directly manipulate them to compromise
Nginx. However, a malicious OS can record the encrypted blobs of
configuration and binary files when the administrator writes them.
The OS can also observe the new configuration and binary files
when the administrator sends the signals to upgrade them in the
enclave. Once the administrator has finished the configuration and
binary upgrade, the OS uses Sigy to manipulate the state of the
Nginx server.

Specifically, at 𝑡5, the OS replaces the new configuration file
with the old file it captured and sends malicious sighup to the
enclave. The enclave reads in this configuration and updates the

Sigy: Breaking Intel SGX Enclaves with Malicious Exceptions & Signals ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

C1,B1 C2,B1 C2,B2

sighup sigusr1

C1 C2

B1 B1 B2

C1

sighup

C1,B2

sigusr1

B2

C1,B1
nginx
process

nginx
binary

config

admin writes new file attacker replaces file

t0 t1 t2 t3 t4 t5 t7t6 t8

Figure 6: Maliciously injecting signals to Nginx to trigger
insecure states (pink). C: Configuration, B: Binary.

Nginx process (𝑡6). This ensures that the Nginx process uses an
old configuration with a new binary. Furthermore, the OS can also
replace the new binary file with an old one that it captured and
send sigusr1 (𝑡7). With this, the OS has successfully used Sigy to
restore the Nginx process to the state that it was in at time 𝑡0 before
the administrator performed the upgrades. This exploit will undo
any performance and security improvements provided by the new
binary and configuration and can be used by the OS to bring back
old security bugs (e.g., forcing the enclave to use an Nginx version
before v1.23.2 which patched critical issues [11]).

6.2 Node.js Server
Node.js is an open-source JavaScript runtime used for server-side
scripting. By default, a Node.js server starts a debug web socket on
localhost (127.0.0.1) when it receives sigusr1, even if the server was
started without debugging enabled. To demonstrate Sigy, we use
Scone’s Node.js port that executes an HTTPs server in an enclave.
When the server is up and running, the malicious OS sends sigusr1
to the Node.js server which opens a debug web socket. Using this
web socket, the attacker can leak the server’s memory and inject ar-
bitrary code. In our exploit, we attach Google Chrome browser’s de-
bugger to the web socket in chrome://inspect/#devices. Then,
to demonstrate an attack, we use Google Chrome’s debugger to
leak the RSA private keys used for TLS by the HTTPs server. We
show that this attack needs only 1 injection of sigusr1. This attack
is feasible on production enclaves and does not need the enclave to
be in debug mode. Further, it does not depend on what a developer
implements in the Node.js server but instead relies on Node.js’s
feature to open a debug server. Note that, a malicious network
adversary cannot do this exploit (e.g., by sending a socket request
for the debug socket to the Node.js server).

6.3 Multi-Normal Distribution
We demonstrate Sigy on a Java application, inspired by Heckler,
to show how implicit signal support in programming languages
make applications vulnerable [57]. JSAT is a statistical analysis
tool for machine learning applications in Java. JSAT implements
a MultiVariateNormal class that can be used to create a Multi-
variate Gaussian distribution. The class implements a function that
updates the mean and covariance of the distribution using the
setUsingData function as shown in Lst. 6. If data added to the
dataset causes an ArithmeticException, setUsingData discards
the data and reverts the mean to the original value.

1 public boolean setUsingData(List dataSet) {
2 Vec origMean = this.mean;
3 try { //can overflow
4 Vec newMean = meanVector(dataSet);
5 Matrix covarianc = covarianceMatrix(newMean ,dataSet);
6 this.mean = newMean;
7 setCovariance(covarianc);
8 } catch(ArithmeticException ex) {
9 this.mean = origMean; } }

Listing 6: JSAT mean and covariance.

As noted in Sec. 5.1 and Sec. 5.2: (a) the Java runtime converts
sigfpe to ArithmeticException that can be caught and handled
by Java applications, and (b) Gramine forwards sigfpe to the en-
claves. Therefore, we use Sigy to trigger expressive application logic
in JSAT executing in Gramine by injecting sigfpe. We use one of
the tests in JSAT to train a Learning Vector Quantization (LVQ) with
Multivariate Gaussian distribution as a local classifier. This setup
calls the setUsingData function during the training process of the
classifier. We use Sigy to inject sigfpe every time the program
executes Lines 4 − 8 in Lst. 6. In our attack, we inject sigfpe 240
times and drop the error rate of the classifier from nearly 0% to
66%. Our attack adds an additional overhead of overhead of 3.4 sec-
onds (3.34×) to the training. Therefore, Sigy can be used to bias the
classifier and consequently any inference that a user might execute
on the model that it builds. We choose Java instead of Julia for our
case study because library OSes support running Java applications
in enclaves. However, if library OSes support Julia, a similar attack
would be possible on Julia’s text analysis framework [57].

6.4 Synthetic Example: Multi-Layer Perceptron
To demonstrate the feasibility of Sigy when an application requires
a large number of signal injections we build a signal injection
framework with sgx-step and Gramine. To test the robustness of
our framework, we identify an application that requires a large
number of signal injections (on the order of 108). To start with this
synthetic example, we used an open-source implementation of a
multi-layer perceptron written in C [21]. This library uses tanh as
an activation function which is called over 108 times during the
training process. Mathematically, 𝑡𝑎𝑛ℎ(𝑥) tends to 1 when 𝑥 tends
to∞ which occurs in the tanh function if the input overflows.

1 jmp_buf buf;
2 void sigfpe_handler(int signum)
3 longjmp(buf , 1);
4 void tanh(int input [...]) ...
5 for (i = 0; i < n; i++){
6 if (sigsetjmp(buf , 1))
7 output[i+1] = 1; // on SIGFPE
8 else
9 output[i+1] = tanh(input[i]); // no overflow

Listing 7: Tanh activation function for MLP.

To demonstrate our signal injection framework (Sec.7), we intro-
duce a signal handler to the tanh function to handle overflows as
shown in Lst. 7. Note that, unlike our other case-studies in this sec-
tion, this is only a synthetic example where we introduce a signal
handler for ease of explanation. In a real attack setting, an attacker
in Sigy does not have this capability.

We train the MLP model with 3 hidden layers and up to 6 units
in each layer (tanh activation function in hidden layers, sigmoid
in output layer). Our training consists of 2000 epochs and 1096
training samples from the Banknote data set [10].

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Supraja Sridhara, Andrin Bertschi, Benedict Schlüter, and Shweta Shinde

Using Sigy, if we inject sigfpe when execution is in between
Lines 7-9, it will trigger the signal handler and set output[i+1] to
1 (Line 7). We inject sigfpe into the tanh function 1, 8636 × 107
times during the training of the neural network. Without Sigy, the
training achieves an accuracy of 97.09%. With Sigy, the accuracy
drops to 59.27%. Further, Sigy adds 970 seconds (53.7×) overhead to
the training process. This large overhead is primarily because of the
asynchronous exits that sgx-step triggers and the signal handling
in the enclave on every execution of the tanh function which the
training invokes ≈ 108 times in total.

7 Proof of Concept Exploits
We perform our experiments on machine setups (Appx.A.5). We set
up the laptop with sgx-step compatible configurations. The server
has a kernel with an in-tree driver. Both machines have hardware
support to store exit information in the SSA.
Sending Signals.We send signals to enclaves with the util-linux
program kill [20]. The utility program is a wrapper around the
kill syscall in Linux. The kill syscall populates the siginfo_t
struct to indicate that the signal originated from user-space. Some
of our experiments (e.g., injecting to Java applications) require the
struct to indicate that the signal is the result of an integer division by
zero error (fpe_intdiv) or floating point overflow (fpe_fltovf).
To do this, we implement a kernel module that correctly populates
this information and sends it to the user-space process (98 LoC).
Nginx. Scone is closed-source and only supports running Nginx
servers in the paid versions. Therefore, to perform our experiments
we ported Nginx versions 1.22.1 and 1.24.0 to execute in a Scone
v5.8.0 enclave [32]. To do this, we remove some system calls (e.g.,
fcntl) that Scone does not support. Further, we adapted Nginx
to correctly propagate Scone configurations when spawning new
processes (e.g., by invoking the execve system call). Note that
our modifications do not change the functional behavior of Nginx.
We build Nginx with the select event method and a minimal
configuration to serve HTTP websites.
Node.js. We run a Node.js v10.14.1 web server (28 LoC) with stan-
dard TLS libraries such as express and https using Scone’s v5.8.0
publicly supported Node.js port and configuration [27]. After send-
ing sigusr1 to Node.js, we use Chrome v120.0.6099.224 Developer
tools to connect to the server, dump its memory, and extract the
RSA private key used for TLS.
MLP (Synthetic) and JSAT. To demonstrate Sigy on our synthetic
MLP training (Sec.6.4) we build a signal injection framework using
sgx-step v1.5.0 [63] and Gramine commit 211ec447e [17]. First, as
a preparatory step, we run the training of the model in Gramine in
debug mode, to identify the instruction pages of the tanh function.
To bias the training process, we must inject sigfpe every time the
tanh function is invoked. When the tanh function starts executing,
sgx-step generates an asynchronous exit using timer interrupts and
page faults. We should inject sigfpe on this event but this is not
straightforward. On an asynchronous exit, control switches from
the enclave to Gramine’s uPAL. If we inject sigfpe when uPAL is
executing, Gramine will crash. First, we change Gramine’s uPAL
which executes outside the enclave and can be attacker-controlled
(with 212 LoC) to ignore our signals to avoid it from crashing. Next,
we use our framework to ensure that we inject sigfpe only when

the enclave has resumed executing the tanh function. For this, we
use 2 threads. The main thread executes the enclave and handles the
asynchronous exit on each tanh invocation. Then, a worker thread
injects sigfpe to the enclave after it is resumed. Java applications
require more profiling than ahead-of-time compiled languages. For
simplicity, we perform our experiments on JSAT by ensuring that
our target function (Lst.6) waits for an ArithmeticException.

8 Potential Defenses
Current signal handling mechanisms render SDKs and library OSes
vulnerable to Sigy. We propose techniques to potentially address the
root cause of these issues. Then, we consider orthogonal protection
techniques that can be used to diminish per-application Sigy impact.

8.1 Detecting Fake Signals
Hardware exceptions in SDKs. All the SDKs that we analyzed
implement a hardware exception handling interface that checks the
exit information before invoking application-registered exception
handlers as shown in Fig. 2(a). Except for Intel SGX SDK, all of
them introduce additional mechanisms to support enclave threads
to send and receive signals. This makes the SDKs vulnerable to Sigy
(Fig.2(b)) and should be hardened. First, they should not accept
signals from the OS that usually are a result of hardware exceptions
(e.g., sigfpe, sigsegv) as these signals should be sent through
the hardware exception handling interface and never through the
signal handling interface for custom signals.
Protecting inter-thread signals in SDKs. To prevent Sigy, the
SDKs should introduce a mechanism to check if a signal that a
thread receives was in fact raised by an enclave thread. For example,
the trusted runtime can set up a protected shared memory between
the enclave threads. Then, to indicate that a signal was raised by an
enclave thread, the trusted runtime can write the signal number and
target threadID in the shared memory region and only then exit the
enclave with an ocall. Further, when the untrusted runtime enters
the enclave with the signal, the trusted runtime in the target thread
can look up the shared memory region to check the legitimacy of
the signal. This defense breaks functionality of applications that
require signal injection from outside the enclave (e.g., upgrading
Nginx configuration). If enclaves need signals from outside that
are not raised for hardware exceptions for functionality, there is no
mechanism to defend them against Sigy.
Hardware exceptions in library OSes. Gramine only supports
signals that are raised because of hardware exceptions (Sec.4.1). To
stop Sigy, Gramine’s exception handling can be enhanced to use
the exit information that the hardware stores in the SSA. Gramine
has used this technique in a patch which stops Sigy [7]. Unlike
Gramine, other library OSes support signals that are both raised
because of hardware exceptions (e.g., sigfpe) and explicitly by the
processes (e.g., sigusr1, sighup). Currently, library OSes do not
distinguish between signals from hardware exceptions and signals
that originate from within the application in the enclave. First,
their signal handling logic should be separated for these two cases.
Then, for the first case of hardware exceptions, the library OSes
can filter illegitimate injections using the exit information stored
by the hardware. Next, we discuss mechanisms to protect against
injections of other signals that processes originate.

Sigy: Breaking Intel SGX Enclaves with Malicious Exceptions & Signals ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

Interprocess-signals in library OSes. Our analysis in Sec. 4
shows that library OSes that create distinct enclaves for application
processes route the signal through the untrusted runtime and OS
which makes them susceptible to Sigy. Protecting this interface is
challenging as enclave processes need a mechanism to check if the
signal is from another trusted enclave process. SGX does not sup-
port setting up shared memory regions between multiple enclave
processes. Therefore, a method similar to the one that we outlined
for signals between threads is not straightforward to implement be-
tween enclave processes. To protect against Sigy, the library OSes
should implement a message passing framework (e.g., using local
attestation to set up a trusted channel) to communicate the signal
information to the target trusted processes which their library OS
looks up to check the signal’s legitimacy. Gramine implements a
similar message-passing framework in its trusted PAL which allows
enclave processes to send software-generated signals to each other.

Occlum is vulnerable to Sigy because it assumes a threat model
where untrusted processes reside within the same enclave. While
setting up a shared memory region to communicate the legitimacy
of signals between processes in Occlum is easier, establishing the
trust relationship between the processes is more challenging. To this
end, Occlum should introduce a notion of attestation across process
groups inside the same enclave. Currently, all processes inside the
enclave are mutually distrusting so this would be a fundamental
architectural change to Occlum. With this notion, Occlum can use a
message-passing mechanism to protect against Sigy. Finally, library
OSes should not accept signals from untrusted software. If such
signals that are not a result of hardware exceptions are required for
functionality then there is no defense against Sigy.

8.2 Limiting Sigy Impact
Sigy relies on the fact that the signal is propagated to the enclave ap-
plication by the runtime or library OS. Once the signal is sent to the
application, it will execute the signal handler in the enclave which
compromises the enclave’s execution integrity. To amplify the effect
of the signal handler, the attacker might need other capabilities
(e.g., replace encrypted blobs of files for Nginx, connect to a port
for Node.js). If there are orthogonal protections like file-system roll-
back prevention, network firewalls, or dynamic attestation in place,
these end-to-end attacks will be stopped. Of the library OSes we sur-
veyed, only Gramine and Scone provide protections for filesystems
and network. Gramine has filesystem protections to add trusted (i.e.,
hashed), and encrypted files to the enclave, but does not provide
rollback protection. Scone paper does not discuss any port or pro-
tocol filtering in network protection for enclaves; when filesystem
protection is enabled it ensures that the files are encrypted, rollback,
and integrity protected. Next, we checked publicly available Scone
versions—its network shields can be configured during enclave cre-
ationwith awhitelist of allowed ports. However, this network shield
is not activated by default allowing Sigy to compromise Node.js.
Thus, developers should consider the new attack surface introduced
by Sigy when configuring enclaves. Lastly, orthogonal protections
cannot stop Sigy attacks which exploit sigfpe and compromise
enclaves as these attacks directly affect enclave memory and do not
need any external subsystem (e.g., network, files). So, library OSes
should build comprehensive defenses for this new attack surface.

9 Related work
Malicious synchronous interfaces. Ports et al. comprehensively
analyze the threats to applications from an untrusted OS [53] in the
context of Overshadow [34], and note that because the untrusted
OS manages the signals it can maliciously alter them. However, the
analysis focuses on synchronous attacks from the OS that redirect
signals or send bad return values. Iago builds on this, where the at-
tacker synchronouslymanipulates the return values for system calls
when the enclave makes explicit requests [33]. These bad return
values can be used to trick the enclave into performing unintended
computations. Iago demonstrates how the limited sanitization in
the system call interface between an enclave and OS can be used to
synchronously alter enclave execution. This synchronous interface
has been studied in the context of SGX enclaves [30, 44, 48, 61].
Malicious asynchronous interfaces. Previousworks have demon-
strated using asynchronous timer interrupts and page faults at arbi-
trary points of the enclave’s execution [63]. The attacker manip-
ulates the software to trigger these hardware events, which then
trigger handlers that have fixed effects—timer interrupts and page
faults cause an exit from the enclave, but do not execute any han-
dlers in the enclave that change the program state. In contrast, to
the best of our knowledge, Sigy is the first work on Intel SGX that
injects signals and exceptions asynchronously at any point during
the enclave’s execution. Depending on enclave-specific logic, such
arbitrary signal injection can induce varied effects depending on
the injected signal and the enclave’s logic for it. This allows Sigy to
execute such signal handlers at any point during enclave execution
to bring about changes to the enclave’s state.
Bugs in enclave runtimes and library OSes. Previous works
have studied and demonstrated attacks on buggy enclave-OS in-
terface implementations (e.g., Application Binary Interface, Appli-
cation Programming Interface) [48, 61]. AsyncShock and Game of
Threads exploit synchronization bugs in multi-threaded enclave
applications by interrupting the threads at specific points in their
execution [67] or using race-conditions [55]. Similarly, SmashEx
demonstrates attacks that use the lack of atomicity in signal han-
dlers to compromise enclaves [39]. In constrast, Sigy does not rely
on bugs in the runtimes, library OSes, or signal handlers.
Bugs in enclave applications. Prior works have used vulnerabili-
ties in enclave application code to compromise it using code-reuse
attacks [49]. Sigy does not rely on bugs in enclave application im-
plementations. However, Sigy can be used to bring back old bugs.
For example, by forcing Nginx to use old binaries, Sigy brings back
vulnerabilities in older Nginx versions.
Detection tools. Several works have used fuzzing [36, 47, 70]
and symbolic execution [30, 35, 48, 66] to detect vulnerabilities in
enclaves. These detection tools can be used to analyze applications
with the intention of finding other effects of signal handling in
enclaves. Lefeuvre et al., investigate the fragility of interfaces for
software compartmentalization and build a fuzzer to detect interface
vulnerabilities but do not consider signals [40]. Beyond Intel SGX,
Sigy’s observations can be applied to other such research avenues.
Side-channels. Prior works have used timer interrupts and page
faults as side-channels [43, 54, 64, 65, 69]. Similarly, others have
leveraged other side-channels to compromise enclaves [42, 52]. Sgx-
step is a framework that enables attackers to precisely single-step

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Supraja Sridhara, Andrin Bertschi, Benedict Schlüter, and Shweta Shinde

enclaves [62]. While Sigy is not a side-channel attack, side-channels
can be used to amplify Sigy’s effects.
Kernel bugs due to interrupts and signals. Buggy implementa-
tion of signal handlers in the kernel can compromise the security of
applications by inducing memory-corruption from race conditions
in the handlers [6]. Prior works have analyzed the possibility of
using buggy signal handlers , interrupt remapping, and kernel races
to corrupt applications executing with trusted OSes [12, 50, 68]. Sig-
nal handlers have been known to have race condition bugs that can
be exploited to compromise applications [6]. Sigy does not assume
any buggy or racy signal handlers.
Sigy on Arm TEEs. Several interface attacks have been demon-
strated on Arm TrustZone [46, 60]. Unlike SGX, TrustZone does not
expose signal interfaces to the malicious OS and filters interrupts
from the untrusted OS to the trusted applications [31]. So, Sigy
cannot be used to attack TrustZone. Heckler shows that Arm CCA’s
VMs are not vulnerable to attacks using malicious interrupts to
trigger signal handlers because of Arm’s interrupt architecture [57].
Furthermore, in Arm CCA’s VM setting, the guest OS is trusted and
the CVM does not accept exceptions and signals from the untrusted
hypervisor. Arm CCA is not vulnerable to Sigy.

10 Discussion
Finding vulnerable applications. For Sigy, an attacker needs
the ability to detect whether the enclave application has a signal
handler that affects the global state. To detect these handlers, an
attacker can use publicly available documentation or manually
analyze the source code. We manually analyzed publicly available
applications to identify vulnerable signal handlers as shown in
Appx. A.4. Of these, we chose applications (e.g., Nginx, Node.js)
that were already ported to run in library OSes for our case-studies.
Similarly, we manually surveyed Java applications on Github to
find several potentially vulnerable applications (see Appx. A.4). We
chose JSAT for our case-study as it was the most maintained.

Alternatively, if the attacker has the source code or an inter-
mediate representation, they can use static or dynamic analysis
techniques (e.g., taint analysis, symbolic execution) [30, 35, 48, 66]
to identify global effects of signal handlers in enclave applications.
In the absence of source-code, the attacker can detect these han-
dlers by fuzzing the enclave binary. Concretely, the attacker can use
fuzzing techniques to inject signals at random, guided by traditional
coverage-metrics (e.g., instructions, blocks, edges) [51, 71, 72].
Ahoi attacks. There are three ways of delivering notifications to a
user-level computation: interrupts, exceptions, and signals. Since
Intel TDX and AMD SEV offer a VM abstraction, the attacker can
only use interrupts as a notification mechanism. Specifically, when
the hypervisor delivers an interrupt, the guest OS can either handle
it in its kernel with an interrupt handler or convert it to an exception
or signal for the user process currently executing on the vCPU.
Recent works introduce a new family of attacks called Ahoi Attacks
that use notifications to compromise hardware-based TEEs [56, 57].
Sigy is an instance of Ahoi attacks. Heckler and WeSee exploit
CVMs provided by AMD-SEV and Intel TDX by injecting malicious
interrupts from hypervisors [56, 57]. In particular, Heckler injects
interrupts which are then delivered as signals to the victim user-
level program. In contrast, Sigy investigates Intel SGX which is a

user-level abstraction and shows that a malicious OS can deliver
interrupts, exceptions, and signals to an enclave. When a CPU
executing an enclave triggers a hardware interrupt (e.g., INT0 for
divide by zero faults), Intel SGX hardware sets the SSA to indicate
that the interrupt did indeed originate on the core. This way, the
enclave software can check the SSA before executing the handler.
Fortunately, our investigation shows that all current enclave SDKs
(Intel SGX SDK, Open Enclave, Teaclave SGX-SDK) do perform the
interrupt authenticity check before executing the handler. However,
this covers only a fraction of the attack surface.
Detecting Sigy with AEX-Notify. Sigy injects signals into en-
claves which cause asynchronous exits. One way to protect an
enclave against Sigy is to detect if an asynchronous exit was caused
by fake signal injections. Intel introduced a hardware extension
called AEX-Notify to perform checks on reentry after an interrupt
or exception [9]. AEX-Notify proposes a defense to prevent pre-
cise single-stepping of enclaves using the new hardware [37]. For
this, they implement handlers for timer-interrupts that speed up
the execution of the successive instructions. AEX-Notify cannot
mitigate Sigy when the applications register handlers that only
need to be invoked once (Sec.6.2 and Sec.6.1) to compromise the
enclave. Specifically, the OS can send the signal when the enclave
has legitimately exited (e.g., timer interrupt, page-fault) without
AEX-Notify detecting it. This is because Sigy will not cause any
asynchronous exits, let alone require any single-stepping.

On the other hand, our attacks that need to send signals when
the enclave application is executing a specific set of instructions
can be harder, but not impossible, to perform in the presence of
AEX-Notify. However, this does not completely stop Sigy. Note
that, for Sigy the attacker does not need to single-step the enclave.
Instead, the attacker needs a mechanism to determine when the
enclave is executing a set of instructions. Further, if the size of this
instruction set is larger than the number of instructions executed
between timer interrupts, there will always be a legitimate enclave
exit for the OS to inject the signal. Then, when a genuine timer
interrupt occurs in between these instructions, the attacker can
inject the signal. For applications where this is not the case, the
frequency of timer interrupts is controlled by the untrusted OS. So,
the attacker can tune the frequency to any value to send signals to
enclaves when the enclave executes the target instruction set.

11 Conclusion
Sigy demonstrates that a malicious OS can exploit Intel SGX en-
claves by delivering malicious exceptions and signals to trick the
enclave into executing handlers. Our analysis of various runtimes
and library OSes shows that they are vulnerable to Sigy. Program-
ming languages as well as native and ported enclave-bound pro-
grams that need exceptions and signal handling should consciously
choose between functionality and security.

Acknowledgments
We thank our shepherd and the anonymous reviewers for their feed-
back; and Mélisande Zonta-Roudes and Mark Kuhne for their com-
ments to improve the paper. Thanks to the developers of Gramine,
Scone, Open Enclave, Teaclave, Asylo, Occlum, and EnclaveOS for
their discussion and engagement during the disclosure process.

Sigy: Breaking Intel SGX Enclaves with Malicious Exceptions & Signals ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

References
[1] accessed 01.01.2025. DartRuntime. https://github.com/GGiry/DartRuntime/blob/

9d452f1981493c61866b391c87534971b26c8207/rt/FiboAsDart.java#L34.
[2] accessed 01.01.2025. GovWay - API Gateway for Public Administration. https://

github.com/link-it/govway/blob/2557c1d46c57222b4ddac70fce6e0a5e0b519e21/
core/src/org/openspcoop2/pdd/core/token/parser/TokenUtils.java#L50.

[3] accessed 01.01.2025. jsjs: JavaScript runtime. https://github.com/forax/jsjs/
blob/1ab2f488c5298c5110f2e06427e652393aaca273/src/com/github/forax/jsjs/
Builtins.java#L72.

[4] accessed 01.01.2025. OSP: An Open Source OWL DL rea-
soner for Java. https://github.com/OpenSourcePhysics/osp/blob/
0ab7fe7d15b8f1e14058c7876b5a86102950089c/src/org/opensourcephysics/
numerics/LUPDecomposition.java#L75.

[5] accessed 01.01.2025. Pellet: An Open Source OWL DL rea-
soner for Java. https://github.com/stardog-union/pellet/blob/
4c7d16bd1811ec04117fa4cd96ed592c6cfa956b/core/src/main/java/com/
clarkparsia/pellet/datatypes/types/real/Rational.java#L229.

[6] accessed 17.04.2024. Unsafe function call from a signal handler .
https://owasp.org/www-community/vulnerabilities/Unsafe_function_call_
from_a_signal_handler.

[7] accessed 22.04.2024. [PAL/Linux-SGX] Cross-verify SW signals vs
HW exceptions. https://github.com/gramineproject/gramine/commit/
a390e33e16ed374a40de2344562a937f289be2e1.

[8] accessed 28.01.2024. Asylo Github. https://github.com/google/asylo.
[9] accessed 28.01.2024. Asynchronous Enclave Exit Notify and the EDECCSSA

User Leaf Function. https://www.intel.com/content/www/us/en/content-
details/736463/white-paper-asynchronous-enclave-exit-notify-and-the-
edeccssa-user-leaf-function.html.

[10] accessed 28.01.2024. Banknote Database. https://banknotedb.com.
[11] accessed 28.01.2024. CVE-2022-41741. https://nvd.nist.gov/vuln/detail/CVE-

2022-41741.
[12] accessed 28.01.2024. Delivering Signals for Fun and Profit. https://lcamtuf.

coredump.cx/signals.txt.
[13] accessed 28.01.2024. Edgelessrt Github. https://github.com/edgelesssys/

edgelessrt.
[14] accessed 28.01.2024. Ego Github. https://github.com/edgelesssys/ego.
[15] accessed 28.01.2024. Enarx Github. https://github.com/enarx/enarx.
[16] accessed 28.01.2024. Fortanix Runtime Encryption® Platform. https://resources.

fortanix.com/hubfs/Fortanix_RTE_Platform_Whitepaper.pdf.
[17] accessed 28.01.2024. Gramine Github. https://github.com/gramineproject/

gramine/tree/211ec447ee69f16139520fc3a17c561c36a00943.
[18] accessed 28.01.2024. Intel SDK. https://github.com/intel/linux-sgx.
[19] accessed 28.01.2024. JSON Web Token (JWT). https://datatracker.ietf.org/doc/

html/rfc7519.
[20] accessed 28.01.2024. kill(1) — Linux manual page. https://man7.org/linux/man-

pages/man1/kill.1.html.
[21] accessed 28.01.2024. Multi Layer Perceptron in C. https://github.com/

manoharmukku/multilayer-perceptron-in-c.
[22] accessed 28.01.2024. MystikOS Github. https://github.com/deislabs/mystikos.
[23] accessed 28.01.2024. Openenclave Github. https://github.com/openenclave/

openenclave.
[24] accessed 28.01.2024. POSIX.1-2017. https://pubs.opengroup.org/onlinepubs/

9699919799.2018edition/.
[25] accessed 28.01.2024. Rust EDP Github. https://github.com/fortanix/rust-sgx/tree/

master.
[26] accessed 28.01.2024. Scone. https://sconedocs.github.io.
[27] accessed 28.01.2024. Scone Nodejs. https://sconedocs.github.io/Nodejs.
[28] accessed 28.01.2024. Teaclave Github. https://github.com/apache/incubator-

teaclave-sgx-sdk.
[29] accessed 28.01.2024. WASI: signal handling. https://github.com/WebAssembly/

WASI/issues/166.
[30] Fritz Alder, Lesly-Ann Daniel, David Oswald, Frank Piessens, and Jo Van Bulck.

2024. Pandora: Principled Symbolic Validation of Intel SGX Enclave Runtimes.
[31] ARM. 2021. Learn the Architecture: TrustZone for AArch64. https:

//developer.arm.com/architectures/learn-the-architecture/trustzone-for-
aarch64/trustzone-in-the-processor.

[32] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16). USENIX Association, Savannah, GA, 689–703. https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/arnautov

[33] Stephen Checkoway and Hovav Shacham. 2013. Iago attacks: why the system
call API is a bad untrusted RPC interface. ACM SIGARCH Computer Architecture
News 41, 1 (2013), 253–264.

[34] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A.
Waldspurger, Dan Boneh, Jeffrey Dwoskin, and Dan R.K. Ports. 2008. Overshadow:
A Virtualization-Based Approach to Retrofitting Protection in Commodity Oper-
ating Systems. SIGOPS Oper. Syst. Rev. 42, 2 (March 2008), 2–13.

[35] Tobias Cloosters, Michael Rodler, and Lucas Davi. 2020. TeeRex: Discovery and
Exploitation of Memory Corruption Vulnerabilities in SGX Enclaves. In 29th
USENIX Security Symposium (USENIX Security 20). USENIX Association, 841–858.
https://www.usenix.org/conference/usenixsecurity20/presentation/cloosters

[36] Tobias Cloosters, Johannes Willbold, Thorsten Holz, and Lucas Davi. 2022. SGX-
Fuzz: Efficiently Synthesizing Nested Structures for SGX Enclave Fuzzing. In
31st USENIX Security Symposium (USENIX Security 22). USENIX Association,
Boston, MA, 3147–3164. https://www.usenix.org/conference/usenixsecurity22/
presentation/cloosters

[37] Scott Constable, Jo Van Bulck, Xiang Cheng, Yuan Xiao, Cedric Xing, Ilya
Alexandrovich, Taesoo Kim, Frank Piessens, Mona Vij, and Mark Silberstein.
2023. AEX-Notify: Thwarting Precise Single-Stepping Attacks through In-
terrupt Awareness for Intel SGX Enclaves. In 32nd USENIX Security Sympo-
sium (USENIX Security 23). USENIX Association, Anaheim, CA, 4051–4068.
https://www.usenix.org/conference/usenixsecurity23/presentation/constable

[38] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 086 (2016), 1–118.

[39] Jinhua Cui, Jason Zhijingcheng Yu, Shweta Shinde, Prateek Saxena, and Zhiping
Cai. 2021. SmashEx: Smashing SGX Enclaves Using Exceptions. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’21).

[40] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito. 2023.
Assessing the impact of interface vulnerabilities in compartmentalized software.
In NDSS.

[41] Adrien Ghosn, James R. Larus, and Edouard Bugnion. 2019. Secured Rou-
tines: Language-based Construction of Trusted Execution Environments. In 2019
USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association, Ren-
ton, WA, 571–586. http://www.usenix.org/conference/atc19/presentation/ghosn

[42] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache Attacks on Intel SGX. In Proceedings of the 10th European Workshop on
Systems Security (Belgrade, Serbia) (EuroSec’17). Association for Computing Ma-
chinery, New York, NY, USA, Article 2, 6 pages. https://doi.org/10.1145/3065913.
3065915

[43] Wenjian He, Wei Zhang, Sanjeev Das, and Yang Liu. 2018. Sgxlinger: A new
side-channel attack vector based on interrupt latency against enclave execution.
In 2018 IEEE 36th International Conference on Computer Design (ICCD). IEEE,
108–114.

[44] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett
Witchel. 2013. InkTag: Secure Applications on an Untrusted Operating System.
SIGPLAN Not. 48, 4 (March 2013), 265–278.

[45] Intel. accessed 28.01.2024. Intel Software Guard Extensions. https://software.
intel.com/content/www/us/en/develop/topics/software-guard-extensions.html.

[46] Peipei Jiang, QianWang, Jianhao Cheng, CongWang, Lei Xu, XinyuWang, Yihao
Wu, Xiaoyuan Li, and Kui Ren. 2023. Boomerang: Metadata-Private Messaging
under Hardware Trust. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23). USENIX Association, Boston, MA, 877–899. https:
//www.usenix.org/conference/nsdi23/presentation/jiang

[47] Arslan Khan, Muqi Zou, Kyungtae Kim, Dongyan Xu, Antonio Bianchi, and
Dave Jing Tian. 2023. Fuzzing SGX Enclaves via Host Program Mutations. In
2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P). 472–488.
https://doi.org/10.1109/EuroSP57164.2023.00035

[48] Mustakimur Rahman Khandaker, Yueqiang Cheng, Zhi Wang, and Tao Wei. 2020.
COIN Attacks: On Insecurity of Enclave Untrusted Interfaces in SGX. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS ’20). Association for Computing Machinery, New York, NY, USA, 971–985.
https://doi.org/10.1145/3373376.3378486

[49] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho
Choi, Taesoo Kim,Marcus Peinado, and Brent ByungHoon Kang. 2017. Hacking in
Darkness: Return-oriented Programming against Secure Enclaves. In 26th USENIX
Security Symposium (USENIX Security 17). USENIX Association, Vancouver,
BC, 523–539. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/lee-jaehyuk

[50] Yoochan Lee, Changwoo Min, and Byoungyoung Lee. 2021. ExpRace: Exploiting
Kernel Races through Raising Interrupts. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 2363–2380. https://www.usenix.org/
conference/usenixsecurity21/presentation/lee-yoochan

[51] Valentin J.M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2021. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering 47,
11 (2021), 2312–2331. https://doi.org/10.1109/TSE.2019.2946563

[52] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof
Fetzer. 2018. Varys: Protecting SGX Enclaves from Practical Side-Channel At-
tacks. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX

https://github.com/GGiry/DartRuntime/blob/9d452f1981493c61866b391c87534971b26c8207/rt/FiboAsDart.java#L34
https://github.com/GGiry/DartRuntime/blob/9d452f1981493c61866b391c87534971b26c8207/rt/FiboAsDart.java#L34
https://github.com/link-it/govway/blob/2557c1d46c57222b4ddac70fce6e0a5e0b519e21/core/src/org/openspcoop2/pdd/core/token/parser/TokenUtils.java#L50
https://github.com/link-it/govway/blob/2557c1d46c57222b4ddac70fce6e0a5e0b519e21/core/src/org/openspcoop2/pdd/core/token/parser/TokenUtils.java#L50
https://github.com/link-it/govway/blob/2557c1d46c57222b4ddac70fce6e0a5e0b519e21/core/src/org/openspcoop2/pdd/core/token/parser/TokenUtils.java#L50
https://github.com/forax/jsjs/blob/1ab2f488c5298c5110f2e06427e652393aaca273/src/com/github/forax/jsjs/Builtins.java#L72
https://github.com/forax/jsjs/blob/1ab2f488c5298c5110f2e06427e652393aaca273/src/com/github/forax/jsjs/Builtins.java#L72
https://github.com/forax/jsjs/blob/1ab2f488c5298c5110f2e06427e652393aaca273/src/com/github/forax/jsjs/Builtins.java#L72
https://github.com/OpenSourcePhysics/osp/blob/0ab7fe7d15b8f1e14058c7876b5a86102950089c/src/org/opensourcephysics/numerics/LUPDecomposition.java#L75
https://github.com/OpenSourcePhysics/osp/blob/0ab7fe7d15b8f1e14058c7876b5a86102950089c/src/org/opensourcephysics/numerics/LUPDecomposition.java#L75
https://github.com/OpenSourcePhysics/osp/blob/0ab7fe7d15b8f1e14058c7876b5a86102950089c/src/org/opensourcephysics/numerics/LUPDecomposition.java#L75
https://github.com/stardog-union/pellet/blob/4c7d16bd1811ec04117fa4cd96ed592c6cfa956b/core/src/main/java/com/clarkparsia/pellet/datatypes/types/real/Rational.java#L229
https://github.com/stardog-union/pellet/blob/4c7d16bd1811ec04117fa4cd96ed592c6cfa956b/core/src/main/java/com/clarkparsia/pellet/datatypes/types/real/Rational.java#L229
https://github.com/stardog-union/pellet/blob/4c7d16bd1811ec04117fa4cd96ed592c6cfa956b/core/src/main/java/com/clarkparsia/pellet/datatypes/types/real/Rational.java#L229
https://owasp.org/www-community/vulnerabilities/Unsafe_function_call_from_a_signal_handler
https://owasp.org/www-community/vulnerabilities/Unsafe_function_call_from_a_signal_handler
https://github.com/gramineproject/gramine/commit/a390e33e16ed374a40de2344562a937f289be2e1
https://github.com/gramineproject/gramine/commit/a390e33e16ed374a40de2344562a937f289be2e1
https://github.com/google/asylo
https://www.intel.com/content/www/us/en/content-details/736463/white-paper-asynchronous-enclave-exit-notify-and-the-edeccssa-user-leaf-function.html
https://www.intel.com/content/www/us/en/content-details/736463/white-paper-asynchronous-enclave-exit-notify-and-the-edeccssa-user-leaf-function.html
https://www.intel.com/content/www/us/en/content-details/736463/white-paper-asynchronous-enclave-exit-notify-and-the-edeccssa-user-leaf-function.html
https://banknotedb.com
https://nvd.nist.gov/vuln/detail/CVE-2022-41741
https://nvd.nist.gov/vuln/detail/CVE-2022-41741
https://lcamtuf.coredump.cx/signals.txt
https://lcamtuf.coredump.cx/signals.txt
https://github.com/edgelesssys/edgelessrt
https://github.com/edgelesssys/edgelessrt
https://github.com/edgelesssys/ego
https://github.com/enarx/enarx
https://resources.fortanix.com/hubfs/Fortanix_RTE_Platform_Whitepaper.pdf
https://resources.fortanix.com/hubfs/Fortanix_RTE_Platform_Whitepaper.pdf
https://github.com/gramineproject/gramine/tree/211ec447ee69f16139520fc3a17c561c36a00943
https://github.com/gramineproject/gramine/tree/211ec447ee69f16139520fc3a17c561c36a00943
https://github.com/intel/linux-sgx
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://man7.org/linux/man-pages/man1/kill.1.html
https://man7.org/linux/man-pages/man1/kill.1.html
https://github.com/manoharmukku/multilayer-perceptron-in-c
https://github.com/manoharmukku/multilayer-perceptron-in-c
https://github.com/deislabs/mystikos
https://github.com/openenclave/openenclave
https://github.com/openenclave/openenclave
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://github.com/fortanix/rust-sgx/tree/master
https://github.com/fortanix/rust-sgx/tree/master
https://sconedocs.github.io
https://sconedocs.github.io/Nodejs
https://github.com/apache/incubator-teaclave-sgx-sdk
https://github.com/apache/incubator-teaclave-sgx-sdk
https://github.com/WebAssembly/WASI/issues/166
https://github.com/WebAssembly/WASI/issues/166
https://developer.arm.com/architectures/learn-the-architecture/trustzone-for-aarch64/trustzone-in-the-processor
https://developer.arm.com/architectures/learn-the-architecture/trustzone-for-aarch64/trustzone-in-the-processor
https://developer.arm.com/architectures/learn-the-architecture/trustzone-for-aarch64/trustzone-in-the-processor
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/usenixsecurity20/presentation/cloosters
https://www.usenix.org/conference/usenixsecurity22/presentation/cloosters
https://www.usenix.org/conference/usenixsecurity22/presentation/cloosters
https://www.usenix.org/conference/usenixsecurity23/presentation/constable
http://www.usenix.org/conference/atc19/presentation/ghosn
https://doi.org/10.1145/3065913.3065915
https://doi.org/10.1145/3065913.3065915
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://www.usenix.org/conference/nsdi23/presentation/jiang
https://www.usenix.org/conference/nsdi23/presentation/jiang
https://doi.org/10.1109/EuroSP57164.2023.00035
https://doi.org/10.1145/3373376.3378486
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-yoochan
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-yoochan
https://doi.org/10.1109/TSE.2019.2946563

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Supraja Sridhara, Andrin Bertschi, Benedict Schlüter, and Shweta Shinde

Association, Boston, MA, 227–240. https://www.usenix.org/conference/atc18/
presentation/oleksenko

[53] Dan R. K. Ports and Tal Garfinkel. 2008. Towards application security on untrusted
operating systems. In Proceedings of the 3rd Conference on Hot Topics in Security
(San Jose, CA) (HOTSEC’08). USENIX Association, USA, Article 1, 7 pages.

[54] Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Capkun. 2021. Frontal
Attack: Leaking Control-Flow in SGX via the CPU Frontend. In 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association, 663–680. https:
//www.usenix.org/conference/usenixsecurity21/presentation/puddu

[55] Jose Rodrigo Sanchez Vicarte, Benjamin Schreiber, Riccardo Paccagnella, and
Christopher W. Fletcher. 2020. Game of Threads: Enabling Asynchronous Poi-
soning Attacks. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems (Lau-
sanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery, New
York, NY, USA, 35–52. https://doi.org/10.1145/3373376.3378462

[56] Benedict Schlüter, Supraja Sridhara, Andrin Bertschi, and Shweta Shinde. 2024.
WeSee: Using Malicious #VC Interrupts to Break AMD SEV-SNP. In IEEE S&P.

[57] Benedict Schlüter, Supraja Sridhara, Mark Kuhne, Andrin Bertschi, and Shweta
Shinde. 2024. Heckler: Breaking Confidential VMs with Malicious Interrupts. In
USENIX Security.

[58] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin
Xia, and Shoumeng Yan. 2020. Occlum: Secure and Efficient Multitasking Inside
a Single Enclave of Intel SGX. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Ma-
chinery, New York, NY, USA, 955–970. https://doi.org/10.1145/3373376.3378469

[59] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin
Xia, and Shoumeng Yan. 2020. Occlum: Secure and efficient multitasking inside
a single enclave of intel sgx. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems. 955–970.

[60] Darius Suciu, Stephen McLaughlin, Laurent Simon, and Radu Sion. 2020. Hor-
izontal Privilege Escalation in Trusted Applications. In 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association. https://www.usenix.org/
conference/usenixsecurity20/presentation/suciu

[61] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D. Garcia,
and Frank Piessens. 2019. A Tale of Two Worlds: Assessing the Vulnerability of
Enclave Shielding Runtimes. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (London, United Kingdom) (CCS
’19). Association for Computing Machinery, New York, NY, USA, 1741–1758.
https://doi.org/10.1145/3319535.3363206

[62] Jo Van Bulck and Frank Piessens. 2023. SGX-Step: An Open-Source Framework
for Precise Dissection and Practical Exploitation of Intel SGX Enclaves. (2023).

[63] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A Practical
Attack Framework for Precise Enclave Execution Control. In Proceedings of the 2nd
Workshop on System Software for Trusted Execution (Shanghai, China) (SysTEX’17).
Association for Computing Machinery, New York, NY, USA, Article 4, 6 pages.
https://doi.org/10.1145/3152701.3152706

[64] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Nemesis: StudyingMicroar-
chitectural Timing Leaks in Rudimentary CPU Interrupt Logic. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(Toronto, Canada) (CCS ’18). Association for Computing Machinery, New York,
NY, USA, 178–195. https://doi.org/10.1145/3243734.3243822

[65] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling your secrets without page faults: Stealthy page {Table-
Based} attacks on enclaved execution. In 26th USENIX Security Symposium
(USENIX Security 17). 1041–1056.

[66] YuanpengWang, Ziqi Zhang, NingyuHe, Zhineng Zhong, Shengjian Guo, Qinkun
Bao, Ding Li, Yao Guo, and Xiangqun Chen. 2023. SymGX: Detecting Cross-
boundary Pointer Vulnerabilities of SGX Applications via Static Symbolic Ex-
ecution. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’23). Association for Computing Machinery, New
York, NY, USA, 2710–2724. https://doi.org/10.1145/3576915.3623213

[67] NicoWeichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. 2016. Async-
Shock: Exploiting synchronisation bugs in Intel SGX enclaves. In Computer
Security–ESORICS 2016: 21st European Symposium on Research in Computer Se-
curity, Heraklion, Greece, September 26-30, 2016, Proceedings, Part I 21. Springer,
440–457.

[68] Rafal Wojtczuk and Joanna Rutkowska. 2011. Following the White Rabbit: Soft-
ware attacks against Intel (R) VT-d technology. https://invisiblethingslab.com/
resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf.

[69] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In IEEE
S&P.

[70] Donghui Yu, Jianqiang Wang, Haoran Fang, Ya Fang, and Yuanyuan Zhang. 2023.
SEnFuzzer: Detecting SGX Memory Corruption via Information Feedback and
Tailored Interface Analysis (RAID ’23). Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/3607199.3607215

[71] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. 2024. The Fuzzing Book. CISPA Helmholtz Center for Information Security.
https://www.fuzzingbook.org/ Retrieved 2024-07-01 16:50:18+02:00.

[72] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. 2022. Fuzzing: A
Survey for Roadmap. ACMComput. Surv. 54, 11s, Article 230 (Sept. 2022), 36 pages.
https://doi.org/10.1145/3512345

A Appendix
A.1 SDK and Library OS Analysis
Tab. 8 shows our findings for signal support in various SDKs and
Library OSes.

A.2 Programming Language Analysis
Tab. 6 shows the signal handlers that were executed for different
programming languages. Tab. 7 shows the signals that are registered
by default interpreters and compilers. Further, Tab.3 shows the
different compiler versions we used for our programming language
analysis. Tab. 9 shows the different languages we analyzed and
the type (implicit or explicit as shown in Fig 7) of signal handling
support they provide.

A.3 Signal Number to Names Mapping
Tab.4 shows mappings from signal numbers to names.

A.4 Vulnerable Applications
Tab.5 shows the publicly available applications we manually ana-
lyzed and found to have signal handlers with global effects.

Lst.11, Lst.8, Lst.10, Lst.9, and lst.12 show Java code snippets we
found by manually surveying applications along with JSAT (Sec. 5)
on Github for vulnerable signal (ArithmeticException) handlers
with global effects. All these applications catch
ArithmeticException and handle it in a way that affects the global
state of the program.

1 try {
2 q = n.divide(d);
3 ex = true;
4 } catch(ArithmeticException e) {
5 q = n.divide(d, MathContext.DECIMAL32);
6 ex = false;
7 }

Listing 8: Snippet from Pellet: An Open Source OWL DL
reasoner for Java [5]

1 try {
2 r3 = RT.addExact(r1, r2);
3 _r3 = null;
4 } catch(ArithmeticException e) {
5 _r3 = RT.addOverflowed(r1, r2);
6 r3 = 0;
7 }

Listing 9: Snippet from DartRuntime [1]

1 parity = 1;
2 try {
3 for(int i = 0; i<n; i++) {
4 swapRows(i, largestPivot(i));
5 pivot(i);
6 }
7 } catch(ArithmeticException e) {
8 parity = 0;
9 }

Listing 10: Snippet from OSP: Open Source Physics Core
Library during LUPDecomposition [4]

https://www.usenix.org/conference/atc18/presentation/oleksenko
https://www.usenix.org/conference/atc18/presentation/oleksenko
https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://doi.org/10.1145/3373376.3378462
https://doi.org/10.1145/3373376.3378469
https://www.usenix.org/conference/usenixsecurity20/presentation/suciu
https://www.usenix.org/conference/usenixsecurity20/presentation/suciu
https://doi.org/10.1145/3319535.3363206
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1145/3243734.3243822
https://doi.org/10.1145/3576915.3623213
https://invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf
https://invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf
https://doi.org/10.1145/3607199.3607215
https://www.fuzzingbook.org/
https://doi.org/10.1145/3512345

Sigy: Breaking Intel SGX Enclaves with Malicious Exceptions & Signals ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

os
signal

exception handler
exception

os
signal

signal handler

(a) (b)

register register

PL runtime signal handler PL runtime

Figure 7: (a) Languages with implicit support for signals. The
PL runtime registers signal handlerswith theOS and converts
signals from the OS to exceptions for the applications. (b)
Languages with explicit support for signals. The PL runtime
allows the applications to directly register handlers with the
OS which are invoked when OS sends signals.

Table 2: Experiment setup.

Machine Intel CPU Cores RAM OS
(Ubuntu) Kernel SGX

SDK
SGX
Driver

Open
JDK

Laptop Core i7-10875H 8 32 GB 20.04 5.10.2 v2.16 2.11.0 17
Server Xeon Gold 6346 32 378 GB 20.04 5.19.0 v2.16 in-tree 17

1 BigDecimal expIn = new BigDecimal(exp);
2 long lMs = 0;
3 try {
4 @SuppressWarnings("unused")
5 long lSeconds = expIn.longValueExact ();
6 expIn = expIn.multiply(BigDecimal.valueOf (1000l));
7 lMs = expIn.longValueExact ();
8 }catch(ArithmeticException ae) {
9 // System.out.println ("PARSE OVERFLOW ["+exp +"]");
10 lMs = Long.MAX_VALUE;
11 expIn = BigDecimal.valueOf(lMs);
12 }
13
14 if(lMs >0) {
15
16 try {
17 expIn = expIn.add(BigDecimal.valueOf(now.getTime ()));
18 lMs = expIn.longValueExact ();
19 }catch(ArithmeticException ae) {
20 // System.out.println ("PARSE OVERFLOW 2 ["+exp +"]");
21 lMs = Long.MAX_VALUE;
22 expIn = BigDecimal.valueOf(lMs);
23 }
24 ...}

Listing 11: Snippet from GovWay - API Gateway for Public
Administration [2]

1 public static Object multiply(Object o1, Object o2) {
2 if (o1 instanceof Integer && o2 instanceof Integer) {
3 try {
4 return Math.multiplyExact ((Integer)o1, (Integer)o2);
5 } catch(ArithmeticException e) {
6 // do nothing
7 }
8 }
9 return ((Number)o1).doubleValue () *
10 ((Number)o2).doubleValue ();
11 }

Listing 12: Snippet from jsjs: JavaScript compiler [3]

A.5 Experimental Setup
Tab.2 shows the experimental setup we use to demonstrate Sigy.

Table 3: Compiler/Interpreter version.

Language Version
C gcc (GCC) 13.2.1
C++ gcc (GCC) 13.2.1
Java OpenJDK 17.0.10
Python Python 3.11.6
Go go 1.21.6
Node.js v21.6.1
Rust cargo 1.75.0
Wasm wasmtime-cli 17.0.0
Julia julia version 1.10.2

Table 4: Signal number to signal name mappings. * Signals
from hardware exceptions

Name # Name

1 SIGHUP 2 SIGINT
3 SIGQUIT 4* SIGILL
5* SIGTRAP 6 SIGABRT/SIGIOT
7* SIGBUS 8* SIGFPE
9 SIGKILL 10 SIGUSR1
11* SIGSEGV 12 SIGUSR2
13 SIGPIPE 14 SIGALRM
15 SIGTERM 16 SIGSTKFLT
17 SIGCHLD 18 SIGCONT
19 SIGSTOP 20 SIGTSTP
21 SIGTTIN 22 SIGTTOU
23 SIGURG 24 SIGXCPU
25 SIGXFSZ 26 SIGVTALRM
27 SIGPROF 28 SIGWINCH
29 SIGIO 30 SIGPWR
31* SIGSYS/SIGUNUSED

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Supraja Sridhara, Andrin Bertschi, Benedict Schlüter, and Shweta Shinde

Table 5: Analysis of applications for signal handlers

Application Signal Description

nginx SIGHUP reload configuration files and replace old processes
httpd SIGUSR1 reload configuration files and replace old processes
squid proxy server SIGHUP reload configuration files and replace old processes

redis SIGUSR1 kill a child process during backup without the parent
treating it as an error

Prometheus SIGHUP reload configuration files
mongodb SIGUSR1 write log files to disk
Node.js SIGUSR1 open debug server

Table 6: Signal support in programming languages. ✓executes signal handler, ✗ crashes the program, ❈ no observable behavior.

Language 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C++ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Java ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Python ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Go ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ❈ ✓ ✓ ✓ ✓

JS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Rust ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wasm ✗

Julia ✗ ✓ ✗ ✗ ❈ ✗ ✗ ✓ ✗ ✓ ✗ ❈ ❈ ✗ ✗ ✗ ❈ ❈ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ❈ ✗ ✗ ✗

Table 7: Signal handlers registered by default in interpreters/compilers. ✓handler registered, ✗no handler registered.

Language 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C ✗

C ++ ✗

Java ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Python ✗ ✓ ✗

Go ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

JS ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Rust ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Wasm ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗

Julia ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Table 8: Signal support in SDKs & library OSes. ✓executes signal handler, ✗ crashes the enclave, ❈ no observable behavior.
(Appx. A.3 for mappings from signal number to signal name).

Runtime/LibOS 1 2 3 4* 5* 6 7* 8* 9 10 11* 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31*
Open Enclave ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ❈ ❈ ✗ ❈ ❈ ❈ ❈ ✗ ✗ ✗ ✗ ❈ ❈ ✗ ✗

Teaclave ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Asylo ✓ ✓ ✓ ❈ ✓ ✓ ❈ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ❈ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ❈ ✓ ✓

Gramine ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ❈ ❈ ✗ ❈ ✗ ❈ ❈ ✗ ❈ ❈ ❈ ❈ ✗ ✗ ✗ ✗ ❈ ✗ ✗ ✗

Scone ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

EnclaveOS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Occlum ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 9: Implicit: Runtime converts signals into s/w exceptions. Explicit: Processes can register signal handlers.

Language Implicit Explicit Language Implicit Explicit
C ✗ ✓ Go ✗ ✓

C++ ✗ ✓ JS ✗ ✓

Java ✓ ✗ Rust ✗ ✓

Python ✗ ✓ Wasm ✗ ✗

Julia ✓ ✗

	Abstract
	1 Introduction
	2 Sigy Overview
	2.1 Motivating Examples
	2.2 Sigy Attacks on Real-world Enclaves

	3 Faking Signals in SDKs
	3.1 Intel SGX SDK
	3.2 Open Enclave
	3.3 Teaclave SGX-SDK
	3.4 Asylo

	4 Faking signals in Library OSes
	4.1 Gramine
	4.2 Scone and EnclaveOS
	4.3 Occlum
	4.4 Other Runtimes

	5 Which signals can we inject?
	5.1 SDK and Library OS
	5.2 Programming Languages

	6 Case studies
	6.1 Nginx
	6.2 Node.js Server
	6.3 Multi-Normal Distribution
	6.4 Synthetic Example: Multi-Layer Perceptron

	7 Proof of Concept Exploits
	8 Potential Defenses
	8.1 Detecting Fake Signals
	8.2 Limiting Sigy Impact

	9 Related work
	10 Discussion
	11 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 SDK and Library OS Analysis
	A.2 Programming Language Analysis
	A.3 Signal Number to Names Mapping
	A.4 Vulnerable Applications
	A.5 Experimental Setup

